Affiner votre recherche
Résultats 1-10 de 30
The feedback effects of aerosols from different sources on the urban boundary layer in Beijing China
2023
Xin, Jinyuan | Ma, Yongjing | Zhao, Dandan | Gong, Chongshui | Ren, Xinbing | Tang, Guiqian | Xia, Xiangao | Wang, Zifa | Cao, Junji | de Arellano, Jordi Vilà Guerau | Martin, Scot T.
The interaction of aerosols and the planetary boundary layer (PBL) plays an important role in deteriorating urban air quality. Aerosols from different sources may have different effects on regulating PBL structures owing to their distinctive dominant compositions and vertical distributions. To characterize the complex feedback of aerosols on PBL over the Beijing megacity, multiple approaches, including in situ observations in the autumn and winter of 2016–2019, backward trajectory clusters, and large-eddy simulations, were adopted. The results revealed notable distinctions in aerosol properties, vertical distributions and thermal stratifications among three types of air masses from the West Siberian Plain (Type-1), Central Siberian Plateau (Type-2) and Mongolian Plateau (Type-3). Low loadings of 0.28 ± 0.26 and 0.15 ± 0.08 of aerosol optical depth (AOD) appeared in the Type-1 and Type-2, accompanied by cool and less stable stratification, with a large part (80%) of aerosols concentrated below 1500 m. For Type-3, the AOD and single scattering albedo (SSA) were as high as 0.75 ± 0.54 and 0.91 ± 0.05, demonstrating severe pollution levels of abundant scattering aerosols. Eighty percent of the aerosols were constrained within a lower height of 1150 m owing to the warmer and more stable environment. Large-eddy simulations revealed that aerosols consistently suppressed the daytime convective boundary layer regardless of their origins, with the PBL height (PBLH) decreasing from 1120 m (Type-1), 1160 m (Type-2) and 820 m (Type-3) in the ideal clean scenarios to 980 m, 1100 m and 600 m, respectively, under polluted conditions. Therefore, the promotion of absorbing aerosols below the residual layer on PBL could be greatly hindered by the suppression effects generated by both absorbing aerosols in the upper temperature inversion layer and scattering aerosols. Moreover, the results indicated the possible complexities of aerosol-PBL interactions under future emission-reduction scenarios and in other urban regions.
Afficher plus [+] Moins [-]Oxidation and sources of atmospheric NOx during winter in Beijing based on δ18O-δ15N space of particulate nitrate
2021
Zhang, Zhongyi | Guan, Hui | Xiao, Hongwei | Liang, Yue | Zheng, Nengjian | Luo, Li | Liu, Cheng | Fang, Xiaozhen | Xiao, Huayun
The determination of both stable nitrogen (δ¹⁵N–NO₃⁻) and stable oxygen (δ¹⁸O–NO₃⁻) isotopic signatures of nitrate in PM₂.₅ has shown potential for an approach of assessing the sources and oxidation pathways of atmospheric NOx (NO+NO₂). In the present study, daily PM₂.₅ samples were collected in the megacity of Beijing, China during the winter of 2017–2018, and this new approach was used to reveal the origin and oxidation pathways of atmospheric NOx. Specifically, the potential of field δ¹⁵N–NO₃⁻ signatures for determining the NOx oxidation chemistry was explored. Positive correlations between δ¹⁸O–NO₃⁻ and δ¹⁵N–NO₃⁻ were observed (with R² between 0.51 and 0.66, p < 0.01), and the underlying environmental significance was discussed. The results showed that the pathway-specific contributions to NO₃⁻ formation were approximately 45.3% from the OH pathway, 46.5% from N₂O₅ hydrolysis, and 8.2% from the NO₃+HC channel based on the δ¹⁸O-δ¹⁵N space of NO₃⁻. The overall nitrogen isotopic fractionation factor (εN) from NOx to NO₃⁻ on a daily scale, under winter conditions, was approximately +16.1‰±1.8‰ (consistent with previous reports). Two independent approaches were used to simulate the daily and monthly ambient NOx mixtures (δ¹⁵N-NOx), respectively. Results indicated that the monthly mean values of δ¹⁵N-NOx compared well based on the two approaches, with values of −5.5‰ ± 2.6‰, −2.7‰ ± 1.9‰, and −3.2‰ ± 2.2‰ for November, December, and January (2017–2018), respectively. The uncertainty was in the order of 5%, 5‰ and 5.2‰ for the pathway-specific contributions, the εN, and δ¹⁵N-NOx, respectively. Results also indicated that vehicular exhaust was the key contributor to the wintertime atmospheric NOx in Beijing (2017–2018). Our advanced isotopic perspective will support the future assessment of the origin and oxidation of urban atmospheric NOx.
Afficher plus [+] Moins [-]Source apportionment of fine organic carbon (OC) using receptor modelling at a rural site of Beijing: Insight into seasonal and diurnal variation of source contributions
2020
Wu, Xuefang | Chen, Chunrong | Vu, Tuan V. | Liu, D. | Baldo, Clarissa | Shen, Xiaobao | Zhang, Qiang | Cen, Kuang | Zheng, Mei | He, Kebin | Shi, Zongbo | Harrison, Roy M.
This study was designed to investigate the seasonal characteristics and apportion the sources of organic carbon during non-haze days (<75 μg m⁻³) and haze (≥75 μg m⁻³) events at Pinggu, a rural Beijing site. Time-resolved concentrations of carbonaceous aerosols and organic molecular tracers were measured during the winter of 2016 and summer 2017, and a Chemical Mass Balance (CMB) model was applied to estimate the average source contributions. The concentration of OC in winter is comparable with previous studies, but relatively low during the summer. The CMB model apportioned seven separate primary sources, which explained on average 73.8% on haze days and 81.2% on non-haze days of the organic carbon in winter, including vegetative detritus, biomass burning, gasoline vehicles, diesel vehicles, industrial coal combustion, residential coal combustion and cooking. A slightly lower percentage of OC was apportioned in the summer campaign with 64.5% and 78.7% accounted for. The other unapportioned OC is considered to consist of secondary organic carbon (SOC). During haze episodes in winter, coal combustion and SOC were the dominant sources of organic carbon with 23.3% and 26.2%, respectively, followed by biomass burning emissions (20%), whereas in summer, industrial coal combustion and SOC were important contributors. Diurnal contribution cycles for coal combustion and biomass burning OC showed a peak at 6–9 pm, suggesting domestic heating and cooking were the main sources of organic aerosols in this rural area. Backward trajectory analysis showed that high OC concentrations were measured when the air mass was from the south, suggesting that the organic aerosols in Pinggu were affected by both local emissions and regional transport from central Beijing and Hebei province during haze episodes. The source apportionment by CMB is compared with the results of a Positive Matrix Factorization (PMF) analysis of ACSM data for non-refractory PM₁, showing generally good agreement.
Afficher plus [+] Moins [-]Metals in surface specific urban runoff in Beijing
2019
Shajib, Md Tariqul Islam | Hansen, Hans Christian Bruun | Liang, Tao | Holm, Peter E.
Metals are among the most toxic pollutants in urban stormwater. To investigate the concentration of dissolved and particulate fractions, the temporal variation during rain events, the effect of wash-off surface, and to assess the pollution status of metals in urban runoff, a total of 155 samples were collected mainly from trafficked areas, roofs and parking lots in Beijing from March to November 2015. Most of the metals were found mainly in the particulate fraction (68–96%) from trafficked surfaces, while for roof runoff Cd, Fe, Mn and Zn were found more equally in dissolved and particulate fractions. Metal concentrations were higher during start of a rain event than later (p < 0.05), and also were higher the longer the period of antecedent dry days. The mean concentration of all metals in trafficked areas exceeded both the Chinese standard Level III (swimming and fishery waters) and the European standards (surface water). Mean concentrations of Cd, Mn, Zn, Al, Fe, Pb and Ni from trafficked areas were 2–10 times higher due to higher traffic intensity and substantial atmospheric deposition, while Sb was 20 times higher than in any other reported data for urban runoff. Cluster analysis (CA) and principal component analysis (PCA) together with Pearson's correlation co-efficient suggested that Cd, Cr, Cu, Mn, Ni, Pb, and Zn mainly originates from vehicular activities, while Mn and Zn in roof runoff is due to atmospheric deposition. The geo-accumulation and pollution indices show that runoff from trafficked areas are moderately to heavily polluted by most metals, except Cu and Zn. Thus, Beijing urban runoff presents an environmental risk towards lakes, bathing water and drinking water. The results can be used as basis for development of stormwater and pollution control strategies.
Afficher plus [+] Moins [-]Mortality benefits of vigorous air quality improvement interventions during the periods of APEC Blue and Parade Blue in Beijing, China
2017
Lin, Hualiang | Liu, Tao | Fang, Fang | Xiao, Jianpeng | Zeng, Weilin | Li, Xing | Guo, Lingchuan | Tian, Linwei | Schootman, Mario | Stamatakis, Katherine A. | Qian, Zhengmin | Ma, Wenjun
Vigorous air pollution control measures were implemented during the 2014 Asia-Pacific Economic Cooperation and a large-scale military parade (described here as “APEC Blue” and “Parade Blue” periods) in Beijing, China. A natural experiment was conducted in a health impact assessment framework to estimate the number of deaths attributable to PM2.5, using concentration-response functions derived from previous studies conducted in Beijing, combined with the differences in PM2.5 concentrations between intervention and reference periods. Substantial reductions in daily PM2.5 concentrations were observed during both intervention periods. Using the same dates from the prior year as a reference, daily PM2.5 concentration decreased from 98.57 μg/m³ to 47.53 μg/m³ during “APEC Blue”, and from 59.15 μg/m³ to 17.07 μg/m³ during the “Parade Blue”. We estimated that 39–63 all-cause deaths (21–51 cardiovascular, 6–13 respiratory deaths) have been prevented during the APEC period; and 41–65 deaths (22–52 cardiovascular, 6–13 respiratory deaths) have been prevented during the Parade period. This study shows that substantial mortality reductions could be achieved by implementing stringent air pollution mitigation measures.
Afficher plus [+] Moins [-]Characterization of black carbon in an urban-rural fringe area of Beijing
2017
Ji, Dongsheng | Li, Liang | Pang, Bo | Xue, Peng | Wang, Lili | Wu, Yunfei | Zhang, Hongliang | Wang, Yuesi
Measuring black carbon (BC) is critical to understand the impact of combustion aerosols on air quality and climate change. In this study, BC was measured in 2014 at a unique community formed with rapid economic development and urbanization in an urban-rural fringe area of Beijing. Hourly BC concentrations were 0.1–33.5 μg/m3 with the annual average of 4.4 ± 3.7 μg/m3. BC concentrations had clear diurnal, weekly, and seasonal variations, and were closely related with atmospheric visibility. The absorption coefficient of aerosols increased while its contribution to extinction coefficient decreased with the enhancement of PM2.5 concentration. The high mass absorption efficiency (MAE) of EC was attributed to a combination of coal combustion, vehicular emission and rapidly coating by water-soluble ions and organic carbon (OC). BC concentrations followed a typical lognormal pattern, with over 88% samples in 0.1–10.0 μg/m3. Low BC levels were mostly bounded up with winds from north and northwest. Coal combustion and biomass burning were closely associated with severe haze pollution events. Firework discharge had significant UV absorption contribution. During the Asia-Pacific Economic Cooperation (APEC) forum in November 2014, air quality obviously improved due to various control strategies.
Afficher plus [+] Moins [-]Source apportionment of Pb-containing particles in Beijing during January 2013
2017
Cai, Jing | Wang, Jiandong | Zhang, Yanjun | Tian, Hezhong | Zhu, Chuanyong | Gross, Deborah S. | Hu, Min | Hao, Jiming | He, Kebin | Wang, Shuxiao | Zheng, Mei
Although leaded gasoline has been banned in some megacities in China since 1997 and nationally since 2000, atmospheric lead (Pb) pollution is still an important issue in China, as its concentration in megacities such as Beijing remains high. To measure the Pb concentration and identify sources of Pb-containing particles in Beijing during January 2013, both an online Single Particle Aerosol Mass Spectrometer (SPAMS) and offline filters analyzed by inductively coupled plasma-mass spectrometer (ICP-MS) were used at a monitoring site on the Peking University (PKU) campus. The average Pb concentration in PM2.5 was 370 ng/m3 in January 2013 and the highest daily concentration was as high as 1.3 μg/m<sup>3</sup> during our sampling period. Based on the mass spectra from the SPAMS, these particles were classified into 4 major types, including NO3-rich (61%), ECOC-rich (18%), Fe-rich (14%), and SO4-rich (7%). Results from this study suggest that combustion processes and the iron/steel industry were the major primary sources of Pb in Beijing. On clean days, the importance of the primary combustion particle type (ECOC-rich) increased, while during severe haze episodes, Pb-containing particles mixed with secondary ions and Fe were dominant. Based on estimates from the CMAQ model, on average 45% of Pb in PM2.5 in urban Beijing was transported in January 2013, with a much higher percent transported during the haze episodes. The percentage of transported Pb increased with the concentration of Pb and PM2.5, indicating that emissions from the surrounding areas need to be controlled during high Pb episodes in Beijing in winter.
Afficher plus [+] Moins [-]Spatial pattern of heavy metals accumulation risk in urban soils of Beijing and its influencing factors
2016
Liu, Rui | Wang, Meie | Chen, Weiping | Peng, Chi
Accumulations of heavy metals in urban soils are highly spatial heterogeneity and affected by multiple factors including soil properties, land use and pattern, population and climatic conditions. We studied accumulation risks of Cd, Cu, Pb and Zn in unban soils of Beijing and their influencing based on the regression tree analysis and a GIS-based overlay model. Result shows that Zinc causes the most extensive soil pollution and Cu result in the most acute soil pollution. The soil's organic carbon content and CEC and population growth are the most significant factors affecting heavy metal accumulation. Other influence factors in land use pattern, urban landscape, and wind speed also contributed, but less pronounced. The soils in areas with higher degree of urbanization and surrounded by intense vehicular traffics have higher accumulation risk of Cd, Cu, Pb, and Zn.
Afficher plus [+] Moins [-]Wintertime haze deterioration in Beijing by industrial pollution deduced from trace metal fingerprints and enhanced health risk by heavy metals
2016
Lin, Yu-Chi | Xu, Shijie | Chou, Charles C.-K. | Zhang, Renjian | Wu, Yunfei | Kao, Shuh-Ji | Luo, Li | Huang, Chao-Hao | Lin, Shuen-Hsin | Huang, Yi-Tang
Airborne particulate matter (PM) was collected in Beijing between 24 February and 12 March 2014 to investigate chemical characteristics and potential industrial sources of aerosols along with health risk of haze events. Results showed secondary inorganic aerosol was the major contributor to PM2.5 during haze days. Utilizing specific elements, including Fe, La, Tl and As, as fingerprinting tracers, four emission sources, namely iron and steel manufacturing, petroleum refining, cement plant, and coal combustion were explicitly identified; their elevated contributions to PM during haze days were also estimated. The average cancer risk from exposure to inhalable PM toxic metals was 1.53 × 10⁻⁴ on haze days, which is one order of magnitude higher than in other developed cities. These findings suggested heavy industries emit large amounts of not only primary PM but also precursor gas pollutants, leading to secondary aerosol formation and harm to human health during haze days.
Afficher plus [+] Moins [-]Influences of ambient air PM2.5 concentration and meteorological condition on the indoor PM2.5 concentrations in a residential apartment in Beijing using a new approach
2015
Han, Yang | Qi, Meng | Chen, Yilin | Shen, Huizhong | Liu, Jing | Huang, Ye | Chen, Han | Liu, Wenxin | Wang, Xilong | Liu, Junfeng | Xing, Baoshan | Tao, Shu
PM2.5 concentrations in a typical residential apartment in Beijing and immediately outside of the building were measured simultaneously during heating and non-heating periods. The objective was to quantitatively explore the relationship between indoor and outdoor PM2.5 concentrations. A statistical method for predicting indoor PM2.5 concentrations was proposed. Ambient PM2.5 concentrations were strongly affected by meteorological conditions, especially wind directions. A bimodal distribution was identified during the heating season due to the frequent and rapid transition between severe pollution events and clean days. Indoor PM2.5 concentrations were significantly correlated with outdoor PM2.5 concentrations but with 1–2 h delay, and the differences can be explained by ambient meteorological features, such as temperature, humidity, and wind direction. These results indicate the potential to incorporate indoor exposure features to the regional air quality model framework and to more accurately estimate the epidemiological relationship between human mortality and air pollution exposure.
Afficher plus [+] Moins [-]