Affiner votre recherche
Résultats 1-10 de 31
Bioaccumulation and trophic magnification of emerging and legacy per- and polyfluoroalkyl substances (PFAS) in a St. Lawrence River food web
2022
Muñoz, Gabriel | Mercier, Laurie | Duy, Sung Vo | Liu, Jinxia | Sauvé, Sébastien | Houde, Magali
Research on per- and polyfluoroalkyl substances (PFAS) in freshwater ecosystems has focused primarily on legacy compounds and little is still known on the presence of emerging PFAS. Here, we investigated the occurrence of 60 anionic, zwitterionic, and cationic PFAS in a food web of the St. Lawrence River (Quebec, Canada) near a major metropolitan area. Water, sediments, aquatic vegetation, invertebrates, and 14 fish species were targeted for analysis. Levels of perfluorobutanoic acid (PFBA) in river water exceeded those of perfluorooctanoic acid (PFOA) or perfluorooctane sulfonate (PFOS), and a zwitterionic betaine was observed for the first time in the St. Lawrence River. The highest mean PFAS concentrations were observed for the benthopelagic top predator Smallmouth bass (Micropterus dolomieu, Σ₆₀PFAS ∼ 92 ± 34 ng/g wet weight whole-body) and the lowest for aquatic plants (0.52–2.3 ng/g). Up to 33 PFAS were detected in biotic samples, with frequent occurrences of emerging PFAS such as perfluorobutane sulfonamide (FBSA) and perfluoroethyl cyclohexane sulfonate (PFECHS), while targeted ether-PFAS all remained undetected. PFOS and long-chain perfluorocarboxylates (C10–C13 PFCAs) dominated the contamination profiles in biota except for insects where PFBA was predominant. Gammarids, molluscs, and insects also had frequent detections of PFOA and fluorotelomer sulfonates, an important distinction with fish and presumably due to different metabolism. Based on bioaccumulation factors >5000 and trophic magnification factors >1, long-chain (C10–C13) PFCAs, PFOS, perfluorodecane sulfonate, and perfluorooctane sulfonamide qualified as very bioaccumulative and biomagnifying. Newly monitored PFAS such as FBSA and PFECHS were biomagnified but moderately bioaccumulative, while PFOA was biodiluted.
Afficher plus [+] Moins [-]Copper stress in grapevine: Consequences, responses, and a novel mitigation strategy using 5-aminolevulinic acid
2022
Yang, Yuxian | Fang, Xiang | Chen, Mengxia | Wang, Lingyu | Xia, Jiaxin | Wang, Zicheng | Fang, Jinggui | Tran, Lam-son Phan | Shangguan, Lingfei
Improper application of copper-based fungicides has made copper stress critical in viticulture, necessitating the need to identify substances that can mitigate it. In this study, leaves of ‘Shine Muscat’ (‘SM’) grapevine seedlings were treated with CuSO₄ solution (10 mM/L), CuSO₄ + 5-aminolevulinic acid (ALA) (50 mg/L), and distilled water to explore the mitigation effect of ALA. Physiological assays demonstrated that ALA effectively reduced malondialdehyde accumulation and increased peroxidase and superoxide dismutase activities in grapevine leaves under copper stress. Copper ion absorption, transport pathways, chlorophyll metabolism pathways, photosynthetic system, and antioxidant pathways play key roles in ALA alleviated-copper stress. Moreover, expression changes in genes, such as CHLH, ALAD, RCA, and DHAR, play vital roles in these processes. Furthermore, abscisic acid reduction caused by NCED down-regulation and decreased naringenin, leucopelargonidin, and betaine contents confirmed the alleviating effect of ALA. Taken together, these results reveal how grapevine responds to copper stress and the alleviating effects of ALA, thus providing a novel means of alleviating copper stress in viticulture.
Afficher plus [+] Moins [-]Bioaccumulation and metabolomics responses in oysters Crassostrea hongkongensis impacted by different levels of metal pollution
2016
Cao, Chen | Wang, Wen-Xiong
Jiulong River Estuary, located in southern China, was heavily contaminated by metal pollution. In this study, the estuarine oysters Crassostrea hongkongensis were transplanted to two sites with similar hydrological conditions but different levels of metal pollution in Jiulong River Estuary over a six-month period. We characterized the time-series change of metal bioaccumulation and final metabolomics responses of oysters. Following transplantation, all metals (Cd, Cu, Cr, Ni, Pb, and Zn) in the oyster digestive glands had elevated concentrations over time. By the end of six-month exposure, Cu, Zn and Cd were the main metals significantly differentiating the two sites. Using 1H NMR metabolite approach, we further demonstrated the disturbance in osmotic regulation, energy metabolism, and glycerophospholipid metabolism induced by metal contaminations. Six months later, the oysters transplanted in the two sites showed a similar metabolite variation pattern when compared with the initial oysters regardless of different metal levels in the tissues. Interestingly, by comparing the oysters from two sites, the more severely polluted oysters accumulated significantly higher amounts of osmolytes (betaine and homarine) and lower energy storage compounds (glycogen) than the less polluted oysters; these changes could be the potential biomarkers for different levels of metal pollution. Our study demonstrated the complexity of biological effects under field conditions, and NMR metabolomics provides an important approach to detect sensitive variation of oyster inner status.
Afficher plus [+] Moins [-]The strategy of arsenic metabolism in an arsenic-resistant bacterium Stenotrophomonas maltophilia SCSIOOM isolated from fish gut
2022
Song, Dongdong | Zhu, Siqi | Chen, Lizhao | Zhang, Ting | Zhang, Li
Bacteria are candidates for the biotransformation of environmental arsenic (As), while As metabolism in bacteria is not yet fully understood. In this study, we sequenced the genome of an As-resistant bacterium strain Stenotrophomonas maltophilia SCSIOOM isolated from the fish gut. After arsenate (As(V)) exposure, S. maltophilia transformed As(V) to organoarsenicals, along with the significant change of the expression of 40 genes, including the upregulation of arsH, arsRBC and betIBA. The heterogeneous expression of arsH and arsRBC increased As resistance of E. coli AW3110 by increasing As efflux and transformation. E. coli AW3110 (pET-betIBA) could transform inorganic As into dimethylarsinate (DMA) and nontoxic arsenobetaine (AsB), which suggested that AsB could be synthesized through the synthetic pathway of its analog-glycine betaine. In addition, the existence of arsRBC, betIBA and arsH reduced the reactive oxygen species (ROS) induced by As exposure. In total, these results demonstrated that S. maltophilia adopted an As metabolism strategy by reducing As accumulation and synthesizing less toxic As species. We first reported the production and potential synthetic pathway of AsB in bacteria, which improved our knowledge of As toxicology in microorganisms.
Afficher plus [+] Moins [-]Biotransformation of perfluoroalkyl acid precursors from various environmental systems: advances and perspectives
2021
Zhang, Wenping | Pang, Shimei | Lin, Ziqiu | Mishra, Sandhya | Bhatt, Pankaj | Chen, Shaohua
Perfluoroalkyl acids (PFAAs) are widely used in industrial production and daily life because of their unique physicochemical properties, such as their hydrophobicity, oleophobicity, surface activity, and thermal stability. Perfluorosulfonic acids (PFSAs) and perfluorocarboxylic acids (PFCAs) are the most studied PFAAs due to their global occurrence. PFAAs are environmentally persistent, toxic, and the long-chain homologs are also bioaccumulative. Exposure to PFAAs may arise directly from emission or indirectly via the environmental release and degradation of PFAA precursors. Precursors themselves or their conversion intermediates can present deleterious effects, including hepatotoxicity, reproductive toxicity, developmental toxicity, and genetic toxicity. Therefore, exposure to PFAA precursors constitutes a potential hazard for environmental contamination. In order to comprehensively evaluate the environmental fate and effects of PFAA precursors and their connection with PFSAs and PFCAs, we review environmental biodegradability studies carried out with microbial strains, activated sludge, plants, and earthworms over the past decade. In particular, we review perfluorooctyl-sulfonamide-based precursors, including perfluroooctane sulfonamide (FOSA) and its N-ethyl derivative (EtFOSA), N-ethyl perfluorooctane sulfonamido ethanol (EtFOSE), and EtFOSE-based phosphate diester (DiSAmPAP). Fluorotelomerization-based precursors are also reviewed, including fluorotelomer alcohols (FTOH), fluorotelomer sulfonates (FTSA), and a suite of their transformation products. Though limited information is currently available on zwitterionic PFAS precursors, a preliminary review of data available for 6:2 fluorotelomer sulfonamide betaine (FTAB) was also conducted. Furthermore, we update and refine the recent knowledge on biotransformation strategies with a focus on metabolic pathways and mechanisms involved in the biotransformation of PFAA precursors. The biotransformation of PFAA precursors mainly involves the cleavage of carbon-fluorine (C–F) bonds and the degradation of non-fluorinated functional groups via oxidation, dealkylation, and defluorination to form shorter-chained PFAAs. Based on the existing research, the current problems and future research directions on the biotransformation of PFAA precursors are proposed.
Afficher plus [+] Moins [-]Toxic responses of metabolites, organelles and gut microorganisms of Eisenia fetida in a soil with chromium contamination
2019
Tang, Ronggui | Li, Xiaogang | Mo, Yongliang | Ma, Yibing | Ding, Changfeng | Wang, Junsong | Zhang, Taolin | Wang, Xingxiang
The toxic sensitivity in different physiological levels of chromium (Cr) contaminated soils with environmentally equivalent concentrations (EEC) was fully unknown. The earthworm Eisenia fetida was exposed to a Cr-contaminated soil at the EEC level (referred to as Cr-CS) to characterize the induced toxicity at the whole body, organ, tissue, subcellular structure and metabolic levels. The results showed that the survival rate, weight and biodiversity of the gut microorganisms (organ) had no significant difference (p > 0.05) between control and Cr-CS groups. Qualitative histopathological and subcellular evaluations from morphology showed earthworms obvious injuries. The organelle injuries combined with the metabolic changes provided additional evidence that the Cr-CS damaged the nucleus and probably disturbed the nucleic acid metabolism of earthworms. 2-hexyl-5-ethyl-3-furansulfonate, dimethylglycine, betaine and scyllo-inositol were sensitive and relatively quantitative metabolites that were recommended as potential biomarkers for Cr-CS based on their significant weights in the multivariate analysis model. In addition, the relative abundance of Burkholderiaceae, Enterobacteriaceae and Microscillaceae of the earthworm guts in the Cr-CS group significantly increased, particularly for Burkholderiaceae (increased by 13.1%), while that of Aeromonadaceae significantly decreased by 5.6% in contrast with the control group. These results provided new insights into our understanding of the toxic effects of the EEC level of Cr contaminated soil from different physiological levels of earthworms and extend our knowledge on the composition and sensitivity of the earthworm gut microbiota in Cr contaminated soil ecosystems. Furthermore, these toxic responses from gut microorganisms to metabolites of earthworms provided important data to improve the adverse outcome pathway and toxic mechanism of the Cr-CS if the earthworm genomics and proteomics would be also gained in the future.
Afficher plus [+] Moins [-]Toxicological effects on earthworms (Eisenia fetida) exposed to sub-lethal concentrations of BDE-47 and BDE-209 from a metabolic point
2018
Liang, Ruoyu | Chen, Juan | Shi, Yajuan | Lü, Yonglong | Sarvajayakesavalu, Suriyanarayanan | Xu, Xiangbo | Zheng, Xiaoqi | Kifāyatullāh, K̲h̲ān | Su, Chao
Earthworms improve the soil fertility and they are also sensitive to soil contaminants. Earthworms (Eisenia fetida), standard reference species, were usually chosen to culture and handle for toxicity tests. Metabolic responses in earthworms exposed to 2, 2′, 4, 4′-tetrabromodiphenyl ether (BDE-47) and decabromodiphenyl ether (BDE-209) were inhibitory and interfered with basal metabolism. In this study, 1H-NMR based metabolomics was used to identify sensitive biomarkers and explore metabolic responses of earthworms under sub-lethal BDE-47 and BDE-209 concentrations for 14 days. The results revealed that lactate was accumulated in earthworms exposed to BDE-47 and BDE-209. Glutamate increased significantly when the concentration of BDE-47 and BDE-209 reached 10 mg/kg. The BDE-47 exposure above 50 mg/kg concentration decreased the content of fumarate significantly, which was noticed different from that of BDE-209. Whereas, the BDE-207 or BDE-209 exposure increased the protein degradation into amino acids in vivo. The increased betaine content indicated that earthworms may maintain the cell osmotic pressure and protected enzyme activity by metabolic regulation. Moreover, the BDE-47 and BDE-209 exposure at 10 mg/kg changed most of the metabolites significantly, indicating that the metabolic responses were more sensitive than growth inhibition and gene expression. The metabolomics results revealed the toxic modes of BDE-47 and BDE-209 act on the osmoregulation, energy metabolism, nerve activities, tricarboxylic acid cycle and amino acids metabolism. Furthermore, our results highlighted that the 1H-NMR based metabolomics is a strong tool for identifying sensitive biomarkers and eco-toxicological assessment.
Afficher plus [+] Moins [-]Antioxidant gene expression and metabolic responses of earthworms (Eisenia fetida) after exposure to various concentrations of hexabromocyclododecane
2018
Shi, Yajuan | Xu, Xiangbo | Chen, Juan | Liang, Ruoyu | Zheng, Xiaoqi | Shi, Yajing | Wang, Yurong
Hexabromocyclododecane (HBCD), a ubiquitous suspected contaminant, is one of the world's most prominent brominated flame retardants (BFRs). In the present study, earthworms (Eisenia fetida) were exposed to HBCD. The expression of selected antioxidant enzyme genes was measured, and the metabolic responses were assessed using nuclear magnetic resonance (NMR) to identify the molecular mechanism of the antioxidant stress reaction and the metabolic reactions of earthworms to HBCD. A significant up-regulation (p < 0.05) of superoxide dismutase (SOD) gene expression was detected, with the highest gene expression level of SOD appearing at a dose of 400 mg kg⁻¹ dw (2.06-fold, p < 0.01). However, the glutathione transferase (GST) gene expression levels did not differ significantly (p > 0.05). Principal component analysis (PCA) of the metabolic responses showed that all groups could be clearly differentiated, and the highest concentration dose group was the most distant from the control group. Except for fumarate, the measured metabolites, which included adenosine triphosphate (ATP), valine, lysine, glycine, betaine and lactate, revealed significant (p < 0.05) increases after 14 days of exposure to HBCD. HBCD likely induces high levels of anaerobic respiration, which would result in high levels of ATP and lead to the disintegration of proteins into amino acids, including valine and lysine, to produce energy. The observed changes in osmotic pressure were indicative of damage to the membrane structure. Furthermore, this study showed that NMR-based metabolomics was a more sensitive tool than measuring the gene expression levels for elucidating the mode of toxicity of HBCD in earthworm exposure studies.
Afficher plus [+] Moins [-]Plastic additive oleamide elicits hyperactivity in hermit crabs
2021
Greenshields, Jack | Schirrmacher, Paula | Hardege, Jorg D.
Numerous studies have estimated the abundance of plastics in our oceans and warned of its threat to wildlife. However, mechanisms underlying its attractiveness to marine life remain unclear. Though visual similarities to food sources have been suggested, recent studies show that biofouled plastics release dimethyl sulfide which marine fauna mistake for food whilst foraging. Our study shows that the plastic additive oleamide (9-octadecenamide) attracts hermit crabs (Pagurus bernhardus). Respiration rate increases significantly in response to low concentrations of oleamide, and hermit crabs show a behavioral attraction comparable to their response to the feeding stimulant betaine. Oleamide has a striking resemblance to the necromone oleic acid, a chemical released by arthropods during decomposition. As scavengers, hermit crabs may misidentify oleamide as a food source, creating an olfactory trap. As such, our short communication demonstrates that additive leaching may play a significant role in the attraction of marine life to plastic.
Afficher plus [+] Moins [-]Effects of hypoxia in the gills of the Manila clam Ruditapes philippinarum using NMR-based metabolomics
2017
Zhang, Ying | Wu, Huifeng | Wei, Lei | Xie, Zeping | Guan, Bo
Coastal hypoxia affects the survival, behavior, and reproduction of individual local marine organisms, and the abundance, biomass, and biodiversity of coastal ecosystems. In this study, we investigated the chronic effects of hypoxia on the metabolomics in the gills of Ruditapes (R.) philippinarum. The results indicated significant alterations in the metabolite profiles in the gills of the hypoxia-treated clams, in comparison with those maintained under normoxia. The levels of betaine, taurine, glycine, isoleucine, and alanine were significantly reduced, suggesting a disturbance of osmotic balance associated with hypoxia. Meanwhile, metabolites involved in energy metabolism, such as alanine and succinate, were also affected. Dramatic histopathological changes were observed in the gills and hepatopancreases of R. philippinarum grown in hypoxic waters, demonstrating tissue damages apparently caused by long-term exposure to hypoxia. Our findings suggest that hypoxia significantly affects the physiology of R. philippinarum, even at a sub-lethal level, and impedes health of the clams.
Afficher plus [+] Moins [-]