Affiner votre recherche
Résultats 1-2 de 2
Bifenazate exposure induces cardiotoxicity in zebrafish embryos
2021
Ma, Jinze | Huang, Yong | Peng, Yuyang | Xu, Zhaopeng | Wang, Ziqin | Chen, Xiaobei | Xie, Shuling | Jiang, Ping | Zhong, Keyuan | Lu, Huiqiang
Bifenazate is a novel acaricide for selective foliar spraying and is widely used to control mites in agricultural production. However, its toxicity to aquatic organisms is unknown. Here, a zebrafish model was used to study bifenazate toxicity to aquatic organisms. Exposure to bifenazate was found to cause severe cardiotoxicity in zebrafish embryos, along with disorders in the gene expression related to heart development. Bifenazate also caused oxidative stress. Cardiotoxicity caused by bifenazate was partially rescued by astaxanthin (an antioxidant), accompanied by cardiac genes and oxidative stress-related indicators becoming normalized. Our results showed that exposure to bifenazate can significantly change the ATPase activity and gene expression levels of the calcium signaling pathway. These led to heart failure, in which the blood accumulated outside the heart without entering it, eventually leading to death. The results indicated that bifenazate exposure caused cardiotoxicity in zebrafish embryos through the induction of oxidative stress and inhibition of the calcium signaling pathway.
Afficher plus [+] Moins [-]Residue dissipation, evaluation of processing factor and safety assessment of hexythiazox and bifenazate residues during drying of grape to raisin
2020
Thekkumpurath, Ahammed Shabeer | Girame, Rushali | Hingmire, Sandip | Jadhav, Manjusha | Jain, Prachi
An analytical method for the simultaneous analysis of hexythiazox and bifenazate residues in grape and raisin was validated by liquid chromatography-tandem mass spectrometry (LC-MS/MS) analysis. The extraction method involved liquid-liquid extraction with ethyl acetate and dSPE cleanup with primary secondary amine (PSA). The drying of grape to raisin may increase or decrease residues of pesticides. During the raisin making process, the dissipation of residue was evaluated and the processing factor (PF) was established for drying. Dissipation data were best fitted to 1ˢᵗ + 1ˢᵗ-order kinetics with a half-life ranging between 6–10 days for hexythiazox and 5–6 days for bifenazate. The PF value for overall raisin making was found to be 0.20–0.36 for hexythiazox and 0.14–0.15 for bifenazate indicating degradation of the residues. However, the PF value varies between 1.13–1.64 for hexythiazox and 0.94–1.12 for bifenazate during the drying process indicating concentration of the residues in drying. The dietary exposure on each sampling day was less than the respective maximum permissible intake (MPI). The residues in market samples of raisins were devoid of any risk of acute toxicity related to dietary exposure. The PF value generated will be useful for the field level management of residues in grape intended for raisin preparation.
Afficher plus [+] Moins [-]