Affiner votre recherche
Résultats 1-10 de 13
Earthworm half-pipe assay: A new alternative in vivo skin corrosion test using invertebrates
2022
Kwak, Jin Il | Kim, Haemi | An, Youn-Joo
As a result of the efforts to introduce the principle of the 3Rs (replacement, reduction, and refinement) into animal testing, alternative in vitro skin corrosion test methods have been developed and standardized globally. However, alternative in vitro skin corrosion test methods have some limitations in terms of the use of humanely killed rats or commercial models and kits. The present study focused on the applicability of invertebrates as alternative in vivo skin models. Even though earthworm skin comprises the same biomolecules as human skin, the possibility of using earthworm skin as an alternative for skin testing remains unexplored. In this study, we developed a half-pipe tool for earthworm skin corrosion testing and optimized the test protocol. Subsequently, the applicability of the earthworm half-pipe assay for corrosion testing with six chemicals, including inorganic acids, organic acids, and alkalis, was investigated using stereomicroscopy and electron microscopy. It was observed that the specific concentrations for earthworm skin corrosion were lower than those for animal or in vitro tests. Therefore, the sensitivity of the earthworm half-pipe assay indicates that it could be useful as a screening tool before conducting in vivo animal tests or in vitro skin tests. This new method can contribute to research on alternative skin corrosion tests by reducing ethical issues, time, and cost while achieving effective results.
Afficher plus [+] Moins [-]Novel sensor technologies towards environmental health monitoring in urban environments: A case study in the Niger Delta (Nigeria)
2014
Obinaju, Blessing E. | Alaoma, Alozie | Martin, Francis L.
The Niger Delta (Nigeria) is an exemplar of a legacy of environmental pollution. Limited knowledge on spatial and temporal pollutant distributions in the region highlights the need for biomonitoring approaches to study impacts on sentinel organisms. This study evaluated whether infrared (IR) spectroscopy and multivariate analysis could detect alterations in biomolecules in samples in differing exposure scenarios, i.e., spatial and temporal using African catfish (Heterobranchus bidorsalis) or water spinach (Ipomea aquatica). Significant spectral differences between tissues isolated from African catfish based on site or season were observed; in a region where fish appeared not to be present, water spinach was used as a surrogate sentinel organism. Using one-way ANOVA, the spectral categories were significant (P < 0.0001). The applicability of IR spectroscopy to detect subtle changes in target biological molecules within sentinel organisms along with its low-cost yet high-throughput potential suggests that biospectroscopy permits real-time evaluation of environmental exposure effects.
Afficher plus [+] Moins [-]Effects of different humic substances concentrations on root anatomy and Cd accumulation in seedlings of Avicennia germinans (black mangrove)
2018
Pittarello, Marco | Busato, Jader Galba | Carletti, Paolo | Zanetti, Leonardo Valandro | da Silva, Juscimar | Dobbss, Leonardo Barros
Mangrove areas are among most threatened tropical ecosystems worldwide. Among polluting agents Cadmium is often found in high concentrations in mangrove sediments. Humic substances, complex biomolecules formed in soil and sediments during animal and plant residuals decomposition, have a known biostimulant activity and can be adopted to counteract various plant stresses. This study explores, in controlled conditions, the effect of humic substances on Avicennia germinans seedlings, with or without cadmium contamination. Humic compounds significantly changed plant root architecture, and, when coupled with cadmium, root anatomy and Cortex to Vascular Cylinder diameter ratio. These modifications led to lower Cd uptake by humic substances-treated plants. Humic substances amendment could be effective, depending on their concentrations, on improving plant health in mangrove areas, for forest recuperation and/or dredged sediments phytoremediation purposes.
Afficher plus [+] Moins [-]A potential role of green engineered TiO2 nanocatalyst towards enhanced photocatalytic and biomedical applications
2021
Ramasamy, Kawsalya | Dhavamani, Sarathikannan | Natesan, Geetha | Sengodan, Karthik | Sengottayan, Senthil-Nathan | Tiwari, Manish | Shivendra Vikram, Sahi | Perumal, Venkatachalam
This study demonstrates a simple protocol for phytofabrication of titanium dioxide nanoparticles (TiO₂NPs) wrapped with bioactive molecules from Ludwigia octovalvis leaf extract and their characterization by UV-visible absorption spectroscopy, Fourier transform spectroscopy (FT-IR), X-ray diffraction (XRD), scanning electron microscopy (SEM), energy dispersive X-ray analysis (EDX), X-ray photoelectron spectrum (XPS), and diffuse reflectance spectrum (DRS). The bandgap energy of pure green engineered TiO₂ nanoparticles was determined by DRS analysis. The XPS analysis confirmed the purity of the TiO₂ nanoparticles. Results show that the synthesized TiO₂NPs were spherical in shape with the size ranged from 36 to 81 nm. The green engineered titanium oxide nanocatalyst exhibited enhanced rate of photocatalytic degradation of important textile toxic dyes namely crystal violet (93.1%), followed by methylene blue (90.6%), methyl orange (76.7%), and alizarin red (72.4%) after 6-h exposure under sunlight irradiation. Besides, this study determines the antimicrobial efficiency of TiO₂NPs (25 μl and 50 μl), leaf extract (25 μl), and antibiotic (25 μl) against clinically isolated human pathogenic bacterial strains namely Staphylococcus aureus, Klebsiella pneumoniae, Pseudomonas aeruginosa, Proteus vulgaris, Staphylococcus epidermidis, and Escherichia coli. Results show that maximum antibacterial activity with nanotitania treatment noticed was 21.6 and 18.3-mm inhibition in case of S. epidermis and P. aeruginosa, respectively. Enhanced rate of antibiofilm activity towards S. aureus and K. pneumoniae was also observed with TiO₂NPs exposure. The biomolecule loaded TiO₂NPs exhibited the fastest bacterial deactivation dynamics towards gram-negative bacteria (E. coli), with a complete bacterial inactivation within 105-min exposure. Interestingly, anticancer activity result indicates that percentage of human cervical carcinoma cell (HeLa) viability was negatively correlated with TiO₂NPs doses used. The AO/EtBr fluorescent staining result exhibited the occurrence of more apoptosis (dead cells) of HeLa cells due to the exposure of TiO₂NPs. Altogether, the present study clearly showed that biomolecules wrapped nanotitania could be used as effective and promising compound for enhanced photocatalytic and biomedical applications in the future.
Afficher plus [+] Moins [-]Biofabrication of ecofriendly copper oxide nanoparticles using Ocimum americanum aqueous leaf extract: analysis of in vitro antibacterial, anticancer, and photocatalytic activities
2021
Manikandan, Dinesh Babu | Arumugam, Manikandan | Veeran, Srinivasan | Sridhar, Arun | Krishnasamy Sekar, Rajkumar | Perumalsamy, Balaji | Ramasamy, Thirumurugan
Nanotechnology tends to be a swiftly growing field of research that actively influences and inhibits the growth of bacteria/cancer. Noble metal nanoparticles (NPs) such as silver, copper, and gold have been used to damage bacterial and cancer growth over recent years; however, the toxicity of higher NPs concentrations remains a major issue. The copper oxide nanoparticles (CuONPs) were therefore fabricated using a simple green chemistry approach. Biofabricated CuONPs were characterized using UV-visible, FE-SEM with EDS, HR-TEM, FT-IR, XRD, Raman spectroscopy, and XPS analysis. Formations of CuONPs have been observed by UV-visible absorbance peak at 360.74 nm. The surface morphology of the CuONPs showed the spherical structure and size (~ 68 nm). The EDS spectrum of CuONPs has proved to be the key signals of copper (Cu) and oxygen (O) components. FT-IR analysis, to validate the important functional biomolecules (O–H, C=C, C–H, C–O) are responsible for reduction and stabilization of CuONPs. The monoclinic end-centered crystalline structures of CuONPs were confirmed with XRD planes. The electrochemical oxygen states of the CuONPs have been studied using spectroscopy of the Raman and X-ray photoelectron. After successful preparation, CuONPs examined their antibacterial, anticancer, and photocatalytic activities. Green-fabricated CuONPs were promising antibacterial candidate against human pathogenic gram-negative bacteria Escherichia coli, Vibrio cholerae, Salmonella typhimurium, Klebsiella pneumoniae, Aeromonas hydrophila, and Pseudomonas aeruginosa. CuONPs were demonstrated the excellent anticancer activity against A549 human lung adenocarcinoma cell line. Furthermore, CuONPs exhibited photocatalytic degradation of azo dyes such as eosin yellow (EY), rhodamine 123 (Rh 123), and methylene blue (MB). Biofabricated CuONPs may therefore be an important biomedical research for the aid of bacterial/cancer diseases and photocatalytic degradation of azo dyes.
Afficher plus [+] Moins [-]Fractionation of Mercury in Water Hyacinth and Pondweed from Contaminated Area of Gold Mine Tailing
2016
Romanova, Tamara E. | Shuvaeva, Olga V.
The ability of water hyacinth (WH) and pondweed (PW) to accumulate mercury from water in gold mine tailing area was studied. Experiments were carried out in the field conditions without using a model system. An approach for mercury fractionation according to its association with various types of biomolecules (water soluble compounds, oxygen-containing ligands such as polycarboxylic acids and cell wall components) was suggested. It is based on sequential extraction of mercury to recover different compounds according to the binding strength. In all cases for WH and PW, the most portion of mercury is bound to the cell wall (63–67 and 54–64 %, for WH and PW, respectively) that works as a physiological barriers and protects the plants from negative impact of mercury ions. An approach based on the ability of plants to extract elements from tailings drainage waters that are characterized by milder conditions in comparison with strongly acidic waste material was suggested. The highest BCF values (66,500 and 32,700 for WH and PW, respectively) were obtained for plants grown in natural stream. At low levels of mercury in water (C Hgwₐₜₑᵣ = 0.01–0.05 ppb) typical for tailing solutions, translocation of the element from roots to shoots decreases as concentration of mercury in WH increases. PW is preferable to use in practice for tailings remediation from mercury contamination since it does not require cultivation in a greenhouse and shows BCF values comparable with WH.
Afficher plus [+] Moins [-]Impact of bandgap tuning on ZnS for degradation of environmental pollutants and disinfection
2022
Joseph, Anju | Billakanti, Srinivas | Pandit, Manzoor Ahmad | Khatun, Sajmina | Rengan, Aravind Kumar | Muralidharan, Krishnamurthi
The materials showing multiple applications are appealing for their practical use and industrial production. To realize the suitable property for various applications, we have produced ZnS (sf-ZnS) and metal-doped ZnS nanoflakes (sf-m-ZnS; where m = Cu, Ni, Cd, Bi, or Mn) and correlated their activity with bandgap variation. We obtained all these materials via hexamethyldisilazane (HMDS)-assisted synthetic method without using any surfactants, polymers, or template molecules and characterized them thoroughly using various techniques. Photocatalytic, as well as antibacterial, activities of these materials showed their bifunctional utility. We have demonstrated the effect of doping and consequent extension of absorption band to the visible region and resultant improved photocatalytic activity under sunlight. Thus, the change in bandgap influenced their performance as photocatalysts. Among all materials produced, sf-Cd-ZnS provided superior results as a photocatalyst while degrading two organic pollutants—rhodamine B (RhB) and methylene blue (MB) in water. The antibacterial activity of sf-ZnS and sf-m-ZnS against Gram-positive bacteria, i.e., Staphylococcus aureus (S. aureus), was examined by the zone of inhibition method, wherein sf-Ni-ZnS showed maximum activity. The enhanced activity of these ZnS materials can be attributed to the free surface of nanoparticles without any capping by organic molecules, which provided an intimate interaction of inorganic semiconductor material with organic and biomolecules. Thus, we have demonstrated modification of properties both by bandgap tuning of materials and providing the opportunity for intimate interaction of materials with substrates. The photocatalytic activity and antibacterial action of metal-doped ZnS produced by our method exhibited their potential for environmental remediation, specifically water purification.
Afficher plus [+] Moins [-]Biosynthesized Fe- and Ag-doped ZnO nanoparticles using aqueous extract of Clitoria ternatea Linn for enhancement of sonocatalytic degradation of Congo red
2020
Chan, Yin Yin | Pang, Yean Ling | Lim, Steven | Lai, Chin Wei | Abdullah, Ahmad Zuhairi | Chong, Woon Chan
Nowadays, the current synthesis techniques used in industrial production of nanoparticles have been generally regarded as nonenvironmentally friendly. Consequently, the biosynthesis approach has been proposed as an alternative to reduce the usage of hazardous chemical compounds and harsh reaction conditions in the production of nanoparticles. In this work, pure, iron (Fe)-doped and silver (Ag)-doped zinc oxide (ZnO) nanoparticles were successfully synthesized through the green route using Clitoria ternatea Linn. The optical, chemical, and physical properties of the biosynthesized ZnO nanoparticles were then analyzed by X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), energy-dispersive X-ray spectroscopy (EDX), UV–Vis diffuse reflectance spectroscopy (DRS), zeta potential measurement, Fourier transform infrared spectroscopy (FTIR), thermogravimetric analysis (TGA), and surface analysis. The biosynthesized ZnO nanoparticles were crystallized with a hexagonal wurtzite structure and possessed smaller particle sizes than those of commercially or chemically produced samples. The existence of biomolecules to act as reducing and stabilizing agents from C. ternatea Linn aqueous extract was confirmed using FTIR analysis. The biosynthesized ZnO nanoparticles mainly comprised of negatively charged groups and responsible for moderately stable dispersion of the nanoparticles. All these properties were favorable for the sonocatalytic degradation of Congo red. Sonocatalytic activity of ZnO nanoparticles was studied through the degradation of 10 mg/L Congo red using ultrasonic irradiation at 45 kHz and 80 W. The results showed that the sonocatalytic degradation efficiency of Congo red in the presence of biosynthesized ZnO nanoparticles prepared at 50 °C for 1 h could achieve 88.76% after 1 h. The sonocatalytic degradation efficiency of Congo red in the presence of Ag-doped ZnO was accelerated to 94.42% after 10 min which might be related to the smallest band gap energy (3.02 eV) and the highest specific surface area (10.31 m²/g) as well as pore volume (0.0781 cm³/g). Lastly, the biosynthesized ZnO nanoparticles especially Ag-doped ZnO offered significant antibacterial potential against Escherichia coli which indicated its ability to inhibit the normal growth and replication of bacterial cells. These results affirmed that the biosynthesized ZnO nanoparticles could be used as an alternative to the current chemical compounds and showed a superior sonocatalytic activity toward degradation of Congo red.
Afficher plus [+] Moins [-]Life cycle assessment of a bioelectrochemical system as a new technological platform for biosuccinic acid production from waste
2018
Foulet, Amandine | Bouchez, Théodore | Quéméner, Elie Desmond-Le | Giard, Lucas | Renvoisé, Laure | Aissani, Lynda
Waste management is a key environmental and socio-economic issue. Environmental concerns are encouraging the use of alternative resources and lower emissions to air, water and soil. Innovative technologies to deal with waste recovery that produce marketable bioproducts are emerging. Bioelectrochemical synthesis systems (BESs) are based on the primary principle of transforming organic waste into added-value products using microorganisms to catalyse chemical reactions. This technology is at the core of a research project called BIORARE (BIoelectrosynthesis for ORganic wAste bioREfinery), an interdisciplinary project that aims to use anaerobic digestion as a supply chain to feed a BES and produce target biomolecules. This technology needs to be driven by environmental strategies. Life Cycle Assessment (LCA) was used to evaluate the BIORARE concept based on expert opinion and prior experiments for the production of biosuccinic acid and waste management. A multidisciplinary approach based on biochemistry and process engineering expertise was used to collect the inventory data. The BES design and the two-step anaerobic digestion process have many potential impacts on air pollution or ecotoxicity-related categories. The comparison of the BIORARE concept with conventional fermentation processes and a water-fed BES technology demonstrated the environmental benefit resulting from the use of both the BES technology and a waste-based substrate as input thus supporting the BIORARE concept. Some trade-offs among the impact categories were identified but led to options to improve the concept. BES design and synergy management may improve the environmental performance of the BIORARE concept.
Afficher plus [+] Moins [-]Green synthesis of gold nanoparticles using fungus Mariannaea sp. HJ and their catalysis in reduction of 4-nitrophenol
2017
Pei, Xiaofang | Qu, Yuanyuan | Shen, Wenli | Li, Huijie | Zhang, Xuwang | Li, Shuzhen | Zhang, Zhaojing | Li, Xuanying
In the present study, biosynthesis of gold nanoparticles (AuNPs) by the cells (cells-AuNPs) and cell-free extracts (extracts-AuNPs) of a new fungus Mariannaea sp. HJ was reported. The as-synthesized particles were characterized by UV-vis spectroscopy, transmission electron microscopy (TEM), X-ray diffraction (XRD), and Fourier transform infrared spectroscopy (FTIR). The effects of different parameters on AuNP biosynthesis were investigated, and initial gold ion concentration of 2 mM, pH 7, was demonstrated to be suitable for both cells-AuNP and extracts-AuNP syntheses. The cells-AuNPs were of various shapes, including sphere, hexagon, and irregular shapes, with an average size of 37.4 nm, while the extracts-AuNPs were almost spherical and pseudo-spherical with an average size of 11.7 nm. XRD pattern suggested that the crystal structure of both AuNPs was face-centered cubic. FTIR spectra implied that some biomolecules from the fungal cell walls or cell-free extracts were involved in the formation of AuNPs. The as-synthesized AuNPs were demonstrated to have excellent catalytic activities for the reduction of 4-nitrophenol with the catalytic rate constants of 5.7 × 10⁻³/s for cells-AuNPs and 24.7 × 10⁻³/s for extracts-AuNPs. To the best of our knowledge, this is the first report on AuNP biosynthesis by Mariannaea sp.
Afficher plus [+] Moins [-]