Affiner votre recherche
Résultats 1-10 de 154
Biocarburants [quelques points de vue; ethanol, esters d' huiles vegetales].
1992
Algae in wastewater treatment, mechanism, and application of biomass for production of value-added product
2022
Bhatt, Pankaj | Bhandari, Geeta | Turco, Ronald F. | Aminikhoei, Zahra | Bhatt, Kalpana | Simsek, Halis
The pollutants can enter water bodies at various point and non-point sources, and wastewater discharge remains a major pathway. Wastewater treatment effectively reduces contaminants, it is expensive and requires an eco-friendly and sustainable alternative approach to reduce treatment costs. Algae have recently emerged as a potentially cost-effective method to remediate toxic pollutants through the mechanism of biosorption, bioaccumulation, and intracellular degradation. Hence, before discharging the wastewater into the natural environment better solutions for environmental resource recovery and sustainable developments can be applied. More importantly, algae are a potential feedstock material for various industrial applications such as biofuel production. Currently, researchers are developing algae as a source for pharmaceuticals, biofuels, food additives, and bio-fertilizers. This review mainly focused on the potential of algae and their specific mechanisms involved in wastewater treatment and energy recovery systems leading to important industrial precursors. The review is highly beneficial for scientists, wastewater treatment plant operators, freshwater managers, and industrial communities to support the sustainable development of natural resources.
Afficher plus [+] Moins [-]Association of household air pollution with cellular and humoral immune responses among women in rural Bangladesh
2022
Raqib, Rubhana | Akhtar, Evana | Sultana, Tajnin | Ahmed, Shyfuddin | Chowdhury, Muhammad Ashique Haider | Shahriar, Mohammad Hasan | Kader, Shirmin Bintay | Eunus, Mahbbul | Haq, Md Ahsanul | Sarwar, Golam | Islam, Tariqul | Alam, Dewan Shamsul | Parvez, Faruque | Begum, Bilkis A. | Ahsan, Habibul | Yunus, Mohammed
Household air pollution (HAP) arising from combustion of biomass fuel (BMF) is a leading cause of morbidity and mortality in low-income countries. Air pollution may stimulate pro-inflammatory responses by activating diverse immune cells and cyto/chemokine expression, thereby contributing to diseases. We aimed to study cellular immune responses among women chronically exposed to HAP through use of BMF for domestic cooking. Among 200 healthy, non-smoking women in rural Bangladesh, we assessed exposure to HAP by measuring particulate matter 2.5 (PM₂.₅), black carbon (BC) and carbon monoxide (CO), through use of personal monitors RTI MicroPEM™ and Lascar CO logger respectively, for 48 h. Blood samples were collected following HAP exposure assessment and were analyzed for immunoprofiling by flow cytometry, plasma IgE by immunoassay analyzer and cyto/chemokine response from monocyte-derived-macrophages (MDM) and -dendritic cells (MDDC) by multiplex immunoassay. In multivariate linear regression model, a doubling of PM₂.₅ was associated with small increments in immature/early B cells (CD19⁺CD38⁺) and plasmablasts (CD19⁺CD38⁺CD27⁺). In contrast, a doubling of CO was associated with 1.20% reduction in CD19⁺ B lymphocytes (95% confidence interval (CI) = -2.36, −0.01). A doubling of PM₂.₅ and BC each was associated with 3.12% (95%CI = −5.85, −0.38) and 4.07% (95%CI = −7.96, −0.17) decrements in memory B cells (CD19⁺CD27⁺), respectively. Exposure to CO was associated with increased plasma IgE levels (beta(β) = 240.4, 95%CI = 3.06, 477.8). PM₂.₅ and CO exposure was associated with increased MDM production of CXCL10 (β = 12287, 95%CI = 1038, 23536) and CCL5 (β = 835.7, 95%CI = 95.5, 1576), respectively. Conversely, BC exposure was associated with reduction in MDDC-produced CCL5 (β = −3583, 95%CI = −6358, −807.8) and TNF-α (β = −15521, 95%CI = −28968, −2074). Our findings suggest that chronic HAP exposure through BMF use adversely affects proportions of B lymphocytes, particularly memory B cells, plasma IgE levels and functions of antigen presenting cells in rural women.
Afficher plus [+] Moins [-]Emission characteristics of polychlorinated dibenzo-p-dioxins and dibenzofurans from industrial combustion of biomass fuels
2022
Zhang, Chunlin | Bai, Li | Yao, Qian | Li, Jiangyong | Wang, Hao | Shen, Liran | Sippula, Olli | Yang, Jun | Zhao, Jinping | Liu, Jun | Wang, Boguang
Although biomass fuel has always been regarded as a source of sustainable energy, it potentially emits polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs). This study investigated PCDD/F emissions from industrial boilers fired with three types of biomass fuel (i.e., bagasse, coffee residue, and biomass pellets) via stack sampling and laboratory analysis. The measured mass concentrations of PCDD/Fs varied among the boilers from 0.0491 to 12.7 ng Nm⁻³ (11% O₂), with the calculated average international toxic equivalent quantity (I-TEQ) from 0.00195 to 1.71 ng I-TEQ Nm⁻³ (11% O₂). Some of them were beyond the limit value for municipal waste incineration. 2,3,4,7,8-PeCDF could be used as a good indicator of dioxin-induced toxicity of stack flue gases from biomass-fired boilers. The PCDFs/PCDDs ratios were more than 1, likely indicating the formation of dioxins in the boilers favored by de novo synthesis. The emission factor (EF) of total PCDD/Fs averaged 5.35 ng I-TEQ kg⁻¹ air-dry biomass (equivalent to 39.0 ng kg⁻¹ air-dry biomass). Specifically, the mean EF was 6.94 ng I-TEQ kg⁻¹ (52.6 ng kg⁻¹) for biomass-pellet-fired boiler, 11.8 ng I-TEQ kg⁻¹ (74.6 ng kg⁻¹) for coffee-residue -fired boiler, and 0.0277 ng I-TEQ kg⁻¹ (0.489 ng kg⁻¹) for bagasse-fired boilers. The annual PCDD/F emission was estimated to be 208 g I-TEQ in 2020 in China, accounting for approximately 2% of the total national annual emission of PCDD/Fs. The results can be used to develop PCDD/Fs emission inventories and offer valuable insights to authorities regarding utilizing biomass in industry in the future.
Afficher plus [+] Moins [-]Novel delipidated chicken feather waste-derived carbon-based molybdenum oxide nanocomposite as efficient electrocatalyst for rapid detection of hydroquinone and catechol in environmental waters
2022
Ganesan, Sivarasan | Sivam, Sadha | Elancheziyan, Mari | Senthilkumar, Sellappan | Ramakrishan, Sankar Ganesh | Soundappan, Thiagarajan | Ponnusamy, Vinoth Kumar
Chicken poultry industry produces a vast amount of feather waste and is often disposed into landfills, creating environmental pollution. Therefore, we explored the valorization of chicken feather waste into lipids and keratinous sludge biomass. This study demonstrates the successful utilization of keratinous sludge biomass as a unique precursor for the facile preparation of novel keratinous sludge biomass-derived carbon-based molybdenum oxide (KSC@MoO₃) nanocomposite material using two-step (hydrothermal and co-pyrolysis) processes. The surface morphology and electrochemical properties of as-prepared nanocomposite material were analyzed using HR-SEM, XRD, XPS, and cyclic voltammetric techniques. KSC@MoO₃ nanocomposite exhibited prominent electrocatalytic behavior to simultaneously determine hydroquinone (HQ) and catechol (CC) in environmental waters. The as-prepared electrochemical sensor showed excellent performance towards the detection of HQ and CC with broad concentration ranges between 0.5–176.5 μM (HQ and CC), and the detection limits achieved were 0.063 μM (HQ) and 0.059 μM (CC). Furthermore, the developed modified electrode has exhibited excellent stability and reproducibility and was also applied to analyze HQ and CC in environmental water samples. Results revealed that chicken feather waste valorization could result in sustainable biomass conversion into a high-value nanomaterial to develop a cost-effective electrochemical environmental monitoring sensor and lipids for biofuel.
Afficher plus [+] Moins [-]Assessment of atmospheric pollutant emissions with maritime energy strategies using bayesian simulations and time series forecasting
2021
Liu, Chia Hui | Duru, Okan | Law, Adrian Wing-Keung
With increasingly stringent regulations on emission criteria and environment pollution concerns, marine fuel oils (particularly heavy fuel oils) that are commonly used today for powering ships will no longer be allowed in the future. Various maritime energy strategies are now needed for the long-term upgrade that might span decades, and quantitative predictions are necessary to assess the outcomes of their implementation for decision support purpose. To address the technical need, a novel approach is developed in this study that can incorporate the strategic implementation of fuel choices and quantify their adequacy in meeting future environmental pollution legislations for ship emissions. The core algorithm in this approach is based on probabilistic simulations with a large sample size of ship movement in the designated port area, derived using a Bayesian ship traffic generator from existing real activity data. Its usefulness with scenario modelling is demonstrated with application examples at five major ports, namely the Ports of Shanghai, Singapore, Tokyo, Long Beach, and Hamburg, for assessment at Years 2020, 2030, and 2050 with three economic scenarios. The included fuel choices in the application examples are comprehensive, including heavy fuel oils, distillates, low sulphur fuel oils, ultra-low sulphur fuel oils, liquefied natural gas, hydrogen, biofuel, methanol, and electricity (battery). Various features are fine-tuned to reflect micro-level changes on the fuel choices, terminal location, and/or ship technology. Future atmospheric pollutant emissions with various maritime energy strategies implemented at these ports are then discussed comprehensively in details to demonstrate the usefulness of the approach.
Afficher plus [+] Moins [-]Quantifying the relative importance of major tracers for fine particles released from biofuel combustion in households in the rural North China Plain
2021
Tao, Jun | Zhang, Zhisheng | Zhang, Leiming | Huang, Daojian | Wu, Yunfei
Biomass burning tracers have been widely used to identify biomass burning types, but such tools can sometimes cause large uncertainties in the source attribution studies of PM₂.₅ (particles with an aerodynamic diameter of smaller than 2.5 μm). To quantify the relative importance of the major biomass burning tracers in PM₂.₅ released from biofuels combusted in the North China Plain, combustion experiments under the smoldering and flaming combustion conditions were conducted using nine types of typical household biofuels including two types of agricultural wastes, five types of hardwoods, one softwood, and one mixed wood briquette. PM₂.₅ samples were collected from the combustion experiments and source profiles of PM₂.₅ were thus determined for various biofuels under the two different combustion conditions. Carbonaceous species including organic carbon (OC) and elemental carbon (EC) were the major chemical components of the PM₂.₅ released from combustion of all the tested biofuels, with mass fractions of 37–45% and 4–7% under the smoldering condition and 11–25% and 7–29% under the flaming condition, respectively. Higher mass fractions of water-soluble inorganic ions (WSIIs, e.g., K⁺ and Cl⁻) in PM₂.₅ were observed under the flaming than smoldering combustion condition, while anhydrosugars (levoglucosan (LG) and mannosan (MN)) presented in an opposite pattern. The average LG/MN ratio in PM₂.₅ changed significantly with biofuel type (20–55 for agricultural wastes, 10–22 for hardwoods (except elm) and 3–6 for softwood), but varied little with combustion condition. In contrast, the K⁺/LG ratio in PM₂.₅ varied significantly between smoldering (<0.2) and flaming (>0.6) combustion conditions for all the biofuel types except softwood. Results from this study suggested that the ratio LG/MN was the best tracer for identifying the biofuel types and the ratio K⁺/LG is suitable for identifying the combustion conditions in this region.
Afficher plus [+] Moins [-]Technological advances for improving fungal cellulase production from fruit wastes for bioenergy application: A review
2021
Srivastava, Neha | Srivastava, Manish | Alhazmi, Alaa | Kausar, Tahreem | Haque, Shafiul | Singh, Rajeev | Ramteke, Pramod W. | Mishra, Pradeep Kumar | Tuohy, Maria | Leitgeb, Maja | Gupta, Vijai Kumar
Fruit wastes can be imperative to elevate economical biomass to biofuels production process at pilot scale. Because of the renewable features, huge availability, having low lignin content organic nature and low cost; these wastes can be of much interest for cellulase enzyme production. This review provides recent advances on the fungal cellulase production using fruit wastes as a potential substrate. Also, the availability of fruit wastes, generation and processing data and their potential applications for cellulase enzyme production have been discussed. Several aspects, including cellulase and its function, solid-state fermentation, process parameters, microbial source, and the application of enzyme in biofuels industries have also been discussed. Further, emphasis has been made on various bottlenecks and feasible approaches such as use of nanomaterials, co-culture, molecular techniques, genetic engineering, and cost economy analysis to develop a low-cost based comprehensive technology for viable production of cellulase and its application in biofuels production technology.
Afficher plus [+] Moins [-]Sustainable valorisation pathways mitigating environmental pollution from brewers’ spent grains
2021
Kavalopoulos, Michael | Stoumpou, Vasileia | Christofi, Andreas | Mai, Sofia | Barampouti, Elli Maria | Moustakas, Konstantinos | Malamis, Dimitris | Loizidou, Maria
In this work, valorisation pathways of brewers’ spent grains (BSG) towards biofuels production under the biorefinery concept were studied utilizing experimental data that provide a common base for straightforward comparison. The dehydration and the recovery of used oil, bioethanol and biogas from BSG were studied. The process units involved were thoroughly investigated and optimized. The oil extraction efficiency reached up to 70% using solid-liquid extraction process with hexane as solvent. The optimal ethanol yield achieved was 45% after the application of acid pretreatment, enzymatic hydrolysis with CellicCTec2 and fermentation with S. Cerevisiae. As far as biogas potential is concerned, the raw BSG, defatted BSG and stillage presented values equal to 379 ± 19, 235 ± 21 and 168 ± 39 mL biogas/g for respectively. Through the combination of the proposed schemes, three biorefinery scenarios were set up able to produce biodiesel, bioethanol and/or biogas. Material flow diagrams were set up in order to assess these schemes. Given that BSG could ensure ‘green’ energy production in the range of 4.5–7.0 million MJ/y if the European BSG potential is fully valorised, BSG could substantially contribute to the biofuel energy strategy.
Afficher plus [+] Moins [-]Bioremediation of ossein effluents using the filamentous marine cyanobacterium Cylindrospermum stagnale
2021
Ameen, Fuad | Al-Homaidan, Ali A. | Alsamhary, Khawla | Al-Enazi, Nouf M. | AlNadhari, Saleh
Wastewater containg proteinaceous ossein effluents are problematic to be treated. We studied the possibility to treat ossein effluents with the marine cyanobacterium strain Cylindrospermum stagnale. After optimizing the culture conditions of the bacterium, three different types of ossein effluents were tested: dicalcium phosphate (DCP), high total dissolved solids (HTDS) and low total dissolved (LTDS). The effluents were diluted with sea water at the following ratios 1:1, 2:1 and 3:2. The optimum operating conditions were at 3000 lux light intensity and 37 °C temperature. The highest degradation of ossein effluens by C. stagnale was attained for a dilution ratio of 1:1. However, less diluted ossein effluents reduced the growth of C. stagnale drastically. The degradation was shown by measuring the chlorophyll a content and the dry weight of bacterial cells during a seven-day incubation period degradation. Fourier Transform Infrared Spectroscopy (FT-IR) analysis verified the degradation showing the presence of the degradation products of ossein (i.e. calcium carbonate and calcite) in the culture medium. Lipid composition in fatty acids appeared to be suitable for biofuel production. The results showed that the marine cyanobacterium C. stagnale can be used to treat ossein effluents, and at the same time, to produce biofuel in a sustainable way.
Afficher plus [+] Moins [-]