Affiner votre recherche
Résultats 1-10 de 334
Prioritization based on risk assessment to study the bioconcentration and biotransformation of pharmaceuticals in glass eels (Anguilla anguilla) from the Adour estuary (Basque Country, France)
2022
Alvarez-Mora, Iker | Bolliet, Valérie | Lopez-Herguedas, Naroa | Castro, Lyen | Anakabe, Eneritz | Monperrus, Mathilde | Etxebarria, Nestor | Department of Analytical Chemistry, University of the Basque Country UPV/ EHU ; Universidad del País Vasco [Espainia] / Euskal Herriko Unibertsitatea [España] = University of the Basque Country [Spain] = Université du pays basque [Espagne] (UPV / EHU) | Plentzia Marine Station, University of the Basque Country ; Universidad del País Vasco [Espainia] / Euskal Herriko Unibertsitatea [España] = University of the Basque Country [Spain] = Université du pays basque [Espagne] (UPV / EHU) | Ecologie Comportementale et Biologie des Populations de Poissons (ECOBIOP) ; Université de Pau et des Pays de l'Adour (UPPA)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE) | Department of Organic and Inorganic Chemistry, University of the Basque Country | Institut des sciences analytiques et de physico-chimie pour l'environnement et les materiaux (IPREM) ; Université de Pau et des Pays de l'Adour (UPPA)-Institut de Chimie - CNRS Chimie (INC-CNRS)-Centre National de la Recherche Scientifique (CNRS) | Agencia Estatal de Investigaci ́on (AEI) of Spain | European Regional Development Fund through project CTM2017–84763-C3–1-R | Basque Government through the financial support as a consolidated group of the Basque Research System (IT1213–19) | University of the Basque Country | Université de Pau et des Pays de l'Adour
International audience | The presence of contaminants of emerging concern in the aquatic environment directly impacts water-living organisms and can alter their living functions. These compounds are often metabolized and excreted, but they can also be accumulated and spread through the food chain. The metabolized contaminants can also lead to the formation of new compounds with unknown toxicity and bioaccumulation potential. In this work, we have studied the occurrence, bioconcentration, and biotransformation of CECs in glass eels (Anguilla anguilla) using UHPLC-HRMS. To select the target CECs, we first carried out an environmental risk assessment of the WWTP effluent that releases directly into the Adour estuary (Bayonne, Basque Country, France). The risk quotients of every detected contaminant were calculated and three ecotoxicologically relevant contaminants were chosen to perform the exposure experiment: propranolol, diazepam, and irbesartan. An experiment of 14 days consisting of 7 days of exposure and 7 days of depuration was carried out to measure the bioconcentration of the chosen compounds. The quantitative results of the concentrations in glass eel showed that diazepam and irbesartan reached BCF ≈10 on day 7, but both compounds were eliminated after 7 days of depuration. On the other hand, propranolol's concentration remains constant all along with the experiment, and its presence can be detected even in the non-exposed control group, which might suggest environmental contamination. Two additional suspect screening strategies were used to identify metabolization products of the target compounds and other xenobiotics already present in wild glass eels. Only one metabolite was identified, nordiazepam, a well-known diazepam metabolite, probably due to the low metabolic rate of glass eels at this stage. The xenobiotic screening confirmed the presence of more xenobiotics in wild glass eels, prominent among them, the pharmaceuticals exemestane, primidone, iloprost, and norethandrolone. ☆ This paper has been recommended for acceptance by. Eddy Y. Zeng. ☆☆ Contaminants of Emerging Concern in Glass Eel (Anguilla anguilla): Occurrence, Bioconcentration and Biotransformation.
Afficher plus [+] Moins [-]Earthworm tolerance to residual agricultural pesticide contamination: field and experimental assessment of detoxification capabilities
2014
Givaudan, Nicolas | Binet, Françoise | Le Bot, Barbara | Wiegand, Claudia | Ecosystèmes, biodiversité, évolution [Rennes] (ECOBIO) ; Université de Rennes (UR)-Institut Ecologie et Environnement - CNRS Ecologie et Environnement (INEE-CNRS) ; Centre National de la Recherche Scientifique (CNRS)-Centre National de la Recherche Scientifique (CNRS)-Observatoire des Sciences de l'Univers de Rennes (OSUR) ; Université de Rennes (UR)-Institut national des sciences de l'Univers (INSU - CNRS)-Université de Rennes 2 (UR2)-Centre National de la Recherche Scientifique (CNRS)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE)-Institut national des sciences de l'Univers (INSU - CNRS)-Université de Rennes 2 (UR2)-Centre National de la Recherche Scientifique (CNRS)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE)-Centre National de la Recherche Scientifique (CNRS) | Institut de recherche en santé, environnement et travail (Irset) ; Université d'Angers (UA)-Université de Rennes (UR)-École des Hautes Études en Santé Publique [EHESP] (EHESP)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Structure Fédérative de Recherche en Biologie et Santé de Rennes (Biosit : Biologie - Santé - Innovation Technologique) | École des Hautes Études en Santé Publique [EHESP] (EHESP) | European University of Brittany via the International Chair of Excellence in Agronomy and Environment granted to C. Wiegand and to ECOBIO laboratory, and by the Institute français du Danemark. It is also part of the LIA "Environmental Toxicology and Stress Ecology" sustained by the CNRS-INEE, the University of South Danemark and the University of Rennes1.
International audience | This study investigates if acclimatization to residual pesticide contamination in agricultural soils is reflected in detoxification, antioxidant enzyme activities and energy budget of earthworms. Five fields within a joint agricultural area exhibited different chemical and farming histories from conventional cultivation to organic pasture. Soil multiresidual pesticide analysis revealed up to 9 molecules including atrazine up to 2.4 ng g(-1) dry soil. Exposure history of endogeic Aporrectodea caliginosa and Allolobophora chlorotica modified their responses to pesticides. In the field, activities of soluble glutathione-S-transferases (sGST) and catalase increased with soil pesticide contamination in A. caliginosa. Pesticide stress was reflected in depletion of energy reserves in A. chlorotica. Acute exposure of pre-adapted and naïve A. caliginosa to pesticides (fungicide Opus(®), 0.1 μg active ingredient epoxiconazole g(-1) dry soil, RoundUp Flash(®), 2.5 μg active ingredient glyphosate g(-1) dry soil, and their mixture), revealed that environmental pre-exposure accelerated activation of the detoxification enzyme sGST towards epoxiconazole.
Afficher plus [+] Moins [-]Efficient biodegradation of phenanthrene using Pseudomonas stutzeri LSH-PAH1 with the addition of sophorolipids: Alleviation of biotoxicity and cometabolism studies
2022
Luo, Chengyi | Hu, Xin | Bao, Mutai | Sun, Xiaojun | Li, Fengshu | Li, Yiming | Liu, Wenxiu | Yang, Yan
Phenanthrene (PHE) is widely distributed, and it can cause genotoxicity in humans by interacting with enzymes in the body. A current challenge for PHE bioremediation is the inhibitory effect of biotoxic intermediates on bacterial growth. Notably, the aerobic biotransformation processes for PHE in the presence of sophorolipids have been poorly studied. Here, a PHE-degrading strain was isolated from sediments and identified as Pseudomonas stutzeri and named LSH-PAH1. It was observed that 1-naphthol (a biotoxic substance that can inhibit strain growth) was produced during the PHE metabolism process of LSH-PAH1. The biodegradation ratio increased from 21.4% to 91.7% within 48 h after the addition of sophorolipids. Unexpectedly, this addition accelerated the metabolic process for 1-naphthol rather than causing its accumulation. The cometabolism of 1-naphthol and sophorolipids alleviated the biotoxic effects for the strain, which was verified by gene expression analysis. We identified a new PHE-degrading strain and provided a mechanism for PHE biodegradation using LSH-PAH1 with the addition of sophorolipids, which provides a reference for practical applications of the bioremediation of PHE and study of the cometabolism of biotoxic intermediates.
Afficher plus [+] Moins [-]Bioaccumulation of per- and polyfluoroalkyl substance in fish from an urban river: Occurrence, patterns and investigation of potential ecological drivers
2022
Macorps, Nicolas | Le Menach, Karyn | Pardon, Patrick | Guérin-Rechdaoui, Sabrina | Rocher, Vincent | Budzinski, Hélène | Labadie, Pierre
Per- and polyfluoroalkyl substances (PFAS) are ubiquitous in aquatic environments and a recent shift toward emerging PFAS is calling for new data on their occurrence and fate. In particular, understanding the determinants of their bioaccumulation is fundamental for risk assessment purposes. However, very few studies have addressed the combined influence of potential ecological drivers of PFAS bioaccumulation in fish such as age, sex or trophic ecology. Thus, this work aimed to fill these knowledge gaps by performing a field study in the Seine River basin (France). Composite sediment and fish (European chub, Squalius Cephalus) samples were collected from four sites along a longitudinal transect to investigate the occurrence of 36 PFAS. Sediment molecular patterns were dominated by fluorotelomer sulfonamidoalkyl betaines (i.e. 6:2 and 8:2 FTAB, 46% of ∑PFAS on average), highlighting the non-negligible contribution of PFAS of emerging concern. C₉–C₁₄ perfluoroalkyl carboxylic acids, perfluorooctane sulfonic acid (PFOS), perfluorooctane sulfonamide (FOSA) and 10:2 fluorotelomer sulfonate (10:2 FTSA) were detected in all fish samples. Conversely, 8:2 FTAB was detected in a few fish from the furthest downstream station only, suggesting the low bioaccessibility or the biotransformation of FTABs. ∑PFAS in fish was in the range 0.22–3.8 ng g⁻¹ wet weight (ww) and 11–140 ng g⁻¹ ww for muscle and liver, respectively. Fish collected upstream of Paris were significantly less contaminated than those collected downstream, pointing to urban and industrial inputs. The influence of trophic ecology and biometry on the interindividual variability of PFAS burden in fish was examined through analyses of covariance (ANCOVAs), with sampling site considered as a categorical variable. While the latter was highly significant, diet was also influential; carbon sources and trophic level (i.e. estimated using C and N stable isotope ratios, respectively) equally explained the variability of PFAS levels in fish.
Afficher plus [+] Moins [-]The strategy of arsenic metabolism in an arsenic-resistant bacterium Stenotrophomonas maltophilia SCSIOOM isolated from fish gut
2022
Song, Dongdong | Zhu, Siqi | Chen, Lizhao | Zhang, Ting | Zhang, Li
Bacteria are candidates for the biotransformation of environmental arsenic (As), while As metabolism in bacteria is not yet fully understood. In this study, we sequenced the genome of an As-resistant bacterium strain Stenotrophomonas maltophilia SCSIOOM isolated from the fish gut. After arsenate (As(V)) exposure, S. maltophilia transformed As(V) to organoarsenicals, along with the significant change of the expression of 40 genes, including the upregulation of arsH, arsRBC and betIBA. The heterogeneous expression of arsH and arsRBC increased As resistance of E. coli AW3110 by increasing As efflux and transformation. E. coli AW3110 (pET-betIBA) could transform inorganic As into dimethylarsinate (DMA) and nontoxic arsenobetaine (AsB), which suggested that AsB could be synthesized through the synthetic pathway of its analog-glycine betaine. In addition, the existence of arsRBC, betIBA and arsH reduced the reactive oxygen species (ROS) induced by As exposure. In total, these results demonstrated that S. maltophilia adopted an As metabolism strategy by reducing As accumulation and synthesizing less toxic As species. We first reported the production and potential synthetic pathway of AsB in bacteria, which improved our knowledge of As toxicology in microorganisms.
Afficher plus [+] Moins [-]Biochemical and cellular responses of the freshwater mussel, Hyriopsis bialata, to the herbicide atrazine
2022
Nuchan, Pattanan | Kovitvadhi, Uthaiwan | Sangsawang, Akkarasiri | Kovitvadhi, Satit | Klaimala, Pakasinee | Srakaew, Nopparat
The present study aimed to evaluate biochemical and cellular responses of the freshwater mussel, Hyriopsis bialata, to the herbicide atrazine (ATZ). The mussels were exposed to environmentally-relevant concentrations of ATZ (0, 0.02 and 0.2 mg/L) and a high concentration (2 mg/L) for 0, 7, 14, 21 and 28 days. Tissues comprising male and female gonads, digestive glands and gills were collected and assessed for ethoxyresorufin-O-deethylase (EROD) activity, glutathione S-transferase (GST) activity, multixenobiotic resistance mechanism (MXR), histopathological responses, DNA fragmentation and bioaccumulation of ATZ and its transformation derivatives, desethylatrazine (DEA) and desisopropylatrazine (DIA). Additionally, circulating estradiol levels were determined. It appeared that ATZ did not cause significant changes in activities of EROD, GST and MXR. There were no apparent ATZ-mediated histopathological effects in the tissues, with the exception of the male gonads exhibiting aberrant aggregation of germ cells in the ATZ-treated mussels. Contrarily, ATZ caused significant DNA fragmentation in all tissues of the treated animals in dose- and time-dependent manners. In general, the circulating estradiol levels were higher in the females than in the males. However, ATZ-treated animals did not show significant alterations in the hormonal levels, as compared with those of the untreated animals. Herein, we showed for the first time differentially spatiotemporal distribution patterns of bioaccumulation of ATZ, DEA and DIA, with ATZ and DEA detectable in the gonads of both sexes, DEA and DIA in the digestive glands and only DEA in the gills. The differential distribution patterns of bioaccumulation of ATZ and its derivatives among the tissues point to different pathways and tissue capacity in transforming ATZ into its transformation products. Taken together, the freshwater mussel H. bialata was resistant to ATZ likely due to their effective detoxification. However, using DNA damage as a potential biomarker, H. bialata is a promising candidate for biomonitoring aquatic toxicity.
Afficher plus [+] Moins [-]Suspended solids-associated toxicity of hydraulic fracturing flowback and produced water on early life stages of zebrafish (Danio rerio)
2021
Lü, Yichun | Zhang, Yifeng | Zhong, Cheng | Martin, Jonathan W. | Alessi, Daniel S. | Goss, Greg G. | Ren, Yuan | He, Yuhe
Hydraulic fracturing flowback and produced water (HF-FPW), which contains polyaromatic hydrocarbons (PAHs) and numerous other potential contaminants, is a complex wastewater produced during the recovery of tight hydrocarbon resources. Previous studies on HF-FPW have demonstrated various toxicological responses of aquatic organisms as consequences of combined exposure to high salinity, dissolved organic compounds and particle/suspended solids-bound pollutants. Noteworthy is the lack of studies illustrating the potentially toxic effects of the FPW suspended solids (FPW-SS). In this study, we investigated the acute and sublethal toxicity of suspended solids filtered from six authentic FPW sample collected from two fracturing wells, using a sediment contact assay based on early-life stages of zebrafish (Danio rerio). PAHs profiles and acute toxicity tests provided initial information on the toxic potency of the six samples. Upon exposure to sediment mixture at two selected doses (1.6 and 3.1 mg/mL), results showed adverse effects in larval zebrafish, as revealed by increased Ethoxyresorufin-O-deethylase (EROD) activity. Transcriptional alterations were also observed in xenobiotic biotransformation (ahr, pxr, cyp1a, cyp1b1, cyp1c1, cyp1c2, cyp3a65, udpgt1a1, udpgt5g1), antioxidant response (sod1, sod2, gpx1a, gpx1b) and hormone receptor signaling (esr1, esr2a, cyp19a1a, vtg1) genes. The results demonstrated that even separated from the complex aqueous FPW mixture, FPW-SS can induce toxicological responses in aquatic organisms' early life stages. Since FPW-SS could sediment to the bottom of natural wetland acting as a continuous source of contaminants, the current findings imply the likelihood of long-term environmental risks of polluted sediments on aquatic ecosystems due to FPW spills.
Afficher plus [+] Moins [-]Multi-biomarkers approach to access the impact of novel metal-insecticide based on flavonoid hesperidin on fish
2021
Bonomo, Marina Marques | Sachi, Ivelise Teresa de Castro | Paulino, Marcelo Gustavo | Fernandes, Joaõ Batista | Carlos, Rose Maria | Fernandes, Marisa Narciso
Aquatic ecosystem health is the main concern to increasing pesticides application to control agricultural pests as it is the ultimate receptor of such materials. This study evaluated the impact of new metal-insecticide, the [Mg(hesp)₂(phen)], referred as MgHP, on fish using physiological, genetic, biochemical, and morphological biomarkers. The fish, Prochilodus lineatus, was exposed to 0 (control), 1, 10, 100, 1000 μg L⁻¹ MgHP, for 24 and 96 h. MgHP was not lethal but caused genotoxicity, altered hematological variables and, the activity of antioxidant and biotransformation enzymes and histology of liver, depending on concentration and time exposure. Hematocrit and erythrocyte number (RBC) increased without change hemoglobin content resulting in changes in hematimetric indexes after 24 h; after 96 h, only RBC was changed. Erythrocyte nuclear abnormalities and crenate cells increased after 24 h but, not after 96 h. Erythrocytes and hepatocytes indicated instability in DNA integrity however, the absence of micronuclei suggested DNA damage repairment. After 24 h, the antioxidant defense system and the phase II biotransformation enzyme was responsiveness and catalase activity decreased at high MgHP concentrations; the antioxidant response was triggered after 96 h. Hepatocyte hypertrophy, intracellular cytoplasmic substances, cytoplasm degeneration, melanomacrophage and hyperemia increased in fish exposed from 10 μg L⁻¹ to higher MgHP concentrations; the organ alteration index increased as MgHP concentration increased showing dose-dependence. Most of hematological and genotoxic effects occurred after 24 h exposure evidencing potential recover capability of organism by activation of the antioxidant defense system and DNA repairment mechanisms. Nevertheless, the histopathological changes in the liver was maintained over time at high MgHP concentrations, a concentration usually no environmental relevant. In conclusion, this data reinforced the importance of continuing research on MgHP effects in other organisms considering the promising use of such compound to control the leaf-cutter ants and other insects.
Afficher plus [+] Moins [-]Column tests for evaluation of the enzymatic biodegradation capacity of hydrocarbons (C10–C50) contaminated soil
2021
Kadri, Tayssir | Robert, Thomas | Rouissi, Tarek | Sebastian, Joseph | Magdouli, Sara | Brar, Satinder Kaur | Martel, Richard | Lauzon, Jean-Marc
Though many studies pertaining to soil bioremediation have been performed to study the microbial kinetics in shake flasks, the process efficiency in column tests is seldom. In the present study, soil columns tests were carried out to study the biodegradation of soil contaminated with a high concentration of diesel (≈19.5 g/kg) petroleum hydrocarbons expressed as C₁₀–C₅₀. Experiments were done with crude enzymatic cocktail produced by the hydrocarbonoclastic bacterium, Alcanivorax borkumensis. A. borkumensis was grown on a media with 3% (v/v) motor oil as the sole carbon and energy source. The effects of the enzyme concentration, treatment time and oxidant on the bioremediation efficiency of C₁₀–C₅₀ were investigated. A batch test was also carried out in parallel to investigate the stability of the enzymes and the effect of the biosurfactants on the desorption and the bioconversion of C₁₀–C₅₀. Batch tests indicated that the biosurfactants significantly affected the desorption and alkane hydroxylase and lipase enzymes, maintained their catalytic activity during the 20-day test, with a half-life of 7.44 days and 8.84 days, respectively. The crude enzyme cocktail, with 40 U/mL of lipase and 10 U/mL of alkane hydroxylase, showed the highest conversion of 57.36% after 12 weeks of treatment with a degradation rate of 0.0218 day⁻¹. The results show that the soil column tests can be used to optimize operating conditions for hydrocarbon degradation and to assess the performance of the overall bioremediation process.
Afficher plus [+] Moins [-]Freshwater phytoplankton: Salinity stress on arsenic biotransformation
2021
Papry, Rimana Islam | Fujisawa, Shogo | Zai, Yinghan | Akhyar, Okviyoandra | Mashio, Asami Suzuki | Hasegawa, Hiroshi
Salinity stress affects aquatic microalgal growth and their physiological responses have been studied extensively. However, arsenic (As) accumulation and biotransformation by freshwater phytoplankton under a salinity gradient have never been addressed. This study reports a distinctive pattern of As uptake, accumulation, and biotransformation by four axenic freshwater phytoplankton species, i.e., Scenedesmus acutus, Closterium aciculare, Staurastrum paradoxum, and Pediastrum duplex. Phytoplankton cells were incubated in sterilised C medium modified with varying salinity levels (0–5‰) in association with arsenate and phosphate concentrations. The biotransformation of arsenate (i.e., As(V)) to arsenite (As(III)) and to further methylated species decreased with increasing salinity in the culture medium whereas As accumulation increased. Among the four strains, only S. acutus and S. paradoxum converted As(V) to As(III), with no detected methylated species. In contrast, C. aciculare and P. duplex biotransformed As(V) to As(III) and further to methyl arsenic species, such as DMAA. S. acutus and S. paradoxum exhibited higher accumulation tendency than the other two species. S. paradoxum showed the lowest As reduction rate (i.e., As(V) to As(III)) compared to other species, although, without significant variations. The morphological changes were observed in phytoplankton cells in response to increased salinity stress. Moreover, As(V) concentrations in the culture medium significantly decreased by day 7–14. Thus, this study presents a conceptual model of the As biotransformation pattern by axenic freshwater phytoplankton.
Afficher plus [+] Moins [-]