Affiner votre recherche
Résultats 1-10 de 608
A common fungicide tebuconazole promotes colitis in mice via regulating gut microbiota
2022
Meng, Zhiyuan | Sun, Wei | Liu, Wan | Wang, Yu | Jia, Ming | Tian, Sinuo | Chen, Xiaojun | Zhu, Wentao | Zhou, Zhiqiang
As a common fungicide, tebuconazole are ubiquitous in the natural environment and poses many potential risks. In this study, we examined the effects of exposure to tebuconazole on colitis in mice and explored its underlying mechanism. Specifically, exposure to tebuconazole could cause structural damage and inflammatory cell infiltration in colon tissue, activate the expression of inflammation-related genes, disrupt the expression of barrier function-related genes, and induce the colonic inflammation in mice. Similarly, exposure to tebuconazole could also exacerbate DSS-induced colitis in mice. In addition, we found that tebuconazole also could change the composition of the gut microbiota. In particular, tebuconazole significantly increases the relative abundance of Akkermansia of mice. Moreover, tebuconazole resulted in metabolic profiles disorders of the serum, leading to significant changes in the relative contents of metabolites involving glycolipid metabolism and amino acid metabolism. Particularly, the results of the gut microbiota transplantation experiment showed that exposure to tebuconazole could induced colonic inflammation in mice in a gut microbiota–dependent manner. Taken together, these results indicated that tebuconazole could induce colitis in mice via regulating gut microbiota. Our findings strongly support the concept that the gut microbiota is a key trigger of inflammatory bowel disease caused by pesticide intake.
Afficher plus [+] Moins [-]Serum concentrations of per-/polyfluoroalkyl substances and its association with renal function parameters among teenagers near a Chinese fluorochemical industrial plant: A cross-sectional study
2022
Xie, Lin-Na | Wang, Xiao-Chen | Su, Li-Qin | Ji, Sai-Sai | Dong, Xiao-Jie | Zhu, Hui-Juan | Hou, Sha-Sha | Wang, Cong | Li, Zhen-Huan | Dong, Bing | Zhu, Ying
Currently, studies on the association between per-/polyfluoroalkyl substances (PFAS) concentrations and the renal function of residents, especially teenagers, living near fluorochemical industrial plants, are relatively rare, and not all these studies suggested associations. In this cross-sectional study, 775 local teenagers (11–15 years old) were included, and serum concentrations of 18 PFAS were measured. Perfluorooctanoic acid (PFOA) was found to be the dominant PFAS with a concentration of 22.3–3310 ng/mL (mean = 191 ng/mL), accounting for 71.5–99.1% of ΣPFAS. Statistical analyses demonstrated that internal exposure of perfluoroalkyl carboxylic acids (PFCA, C8–C10) was related to the plant. In addition, the prevalence rate of chronic kidney disease (CKD) (35.0%) in the participants was relatively high. A significantly positive association was observed between the increase in PFOA concentration and increasing risk of CKD (OR = 1.741; 95% CI: 1.004, 3.088; p = 0.048) by adjusting for gender, age, body mass index (BMI), and household income. Similar positive correlation was also observed in PFHpA with CKD (OR = 1.628, 95% CI: 1.031, 2.572; p = 0.037). However, no significant correlation was observed for concentrations of other PFAS and CKD (p > 0.05). Furthermore, linear regression analyses demonstrated that none of the PFAS concentrations were significantly correlated with estimated glomerular filtration rate (eGFR) or urine albumin/urine creatinine ratio (ACR) (p > 0.05). However, a significantly negative correlation was observed between PFOA concentration and abnormal ACR (β = −0.141, 95% CI: −0.283, 0.001; p = 0.048) after stratifying by CKD. Sensitivity analyses further confirmed these results. This cross-sectional study is the first, to our knowledge, to investigate the association between PFAS concentrations and renal function in teenagers living near a Chinese industrial plant. Further prospective and metabonomic studies are needed to interpret the results and clarify the biological mechanisms underlying this association.
Afficher plus [+] Moins [-]Race-specific associations of urinary phenols and parabens with adipokines in midlife women: The Study of Women's Health Across the Nation (SWAN)
2022
Lee, Seulbi | Karvonen-Gutierrez, Carrie | Mukherjee, Bhramar | Herman, William H. | Park, Sung Kyun
Adipokines, cytokines secreted by adipose tissue, may contribute to obesity-related metabolic disease. The role of environmental phenols and parabens in racial difference in metabolic disease burden has been suggested, but there is limited evidence. We examined the cross-sectional associations of urinary phenols and parabens with adipokines and effect modification by race. Urinary concentrations of 6 phenols (bisphenol-A, bisphenol-F, 2,4-diclorophenol, 2,5-diclorophenol, triclosan, benzophenone-3) and 4 parabens (methyl-paraben, ethyl-paraben, propyl-paraben, butyl-paraben) were measured in 2002–2003 among 1200 women (mean age = 52.6) enrolled in the Study of Women's Health Across the Nation Multi-Pollutant Study. Serum adipokines included adiponectin, high molecular weight (HMW)-adiponectin, leptin, soluble leptin receptor (sOB-R). Linear regression models were used to estimate the adjusted percentage change in adipokines per inter-quantile range (IQR) increase in standardized and log-transformed levels of individual urinary phenols and parabens. Bayesian kernel machine regression (BKMR) was used to evaluate the joint effect of urinary phenols and parabens as mixtures. Participants included white (52.5%), black (19.3%), and Asian (28.1%) women. Urinary 2,4-dichlorophenol was associated with 6.02% (95% CI: 1.20%, 10.83%) higher HMW-adiponectin and urinary bisphenol-F was associated with 2.60% (0.48%, 4.71%) higher sOB-R. Urinary methyl-paraben was associated with lower leptin in all women but this association differed by race: 8.58% (−13.99%, −3.18%) lower leptin in white women but 11.68% (3.52%, 19.84%) higher leptin in black women (P interaction = 0.001). No significant associations were observed in Asian women. Additionally, we observed a significant positive overall effect of urinary phenols and parabens mixtures in relation to leptin levels in black, but not in white or Asian women. Urinary bisphenol-F, 2,4-dichlorophenol and methyl-paraben may be associated with favorable profiles of adipokines, but methyl-paraben, widely used in hair and personal care products, was associated with unfavorable leptin levels in black women. Future studies are needed to confirm this racial difference.
Afficher plus [+] Moins [-]Long-term exposure to environmental levels of phenanthrene induces emaciation-thirst disease-like syndromes in female mice
2022
Fang, Lu | Ou, Kunlin | Huang, Jie | Zhang, Shenli | Zhang, Ying | Zhao, Hezhen | Chen, Meng | Wang, Chonggang
Phenanthrene (Phe) is a polycyclic aromatic hydrocarbon widely present in foods and drinking water. To explore the detrimental effects of Phe on body metabolism, female Kunming mice were treated with Phe in drinking water at concentrations of 0.05, 0.5 and 5 ng/mL. After exposure for 270 d, the animals exhibited dose-dependent reduced body weight and increased water consumption. The dose-dependent accumulation of Phe in the brain decreased hypothalamic neuron numbers, upregulated hypothalamic expression of anaplastic lymphoma kinase, elevated norepinephrine levels in white adipose tissue (WAT) and further activated lipolysis in WAT, leading to a reduction in fat mass. Brown adipose tissue formation was reduced, accompanied by the inhibition of the bone morphogenetic protein signaling pathway. A simultaneous reduced serum levels of antidiuretic hormone (arginine vasopressin) might be one of the reasons for increased water consumption. The present results indicate an environmental etiology and prevention way for the development of emaciation-thirst disease.
Afficher plus [+] Moins [-]Comprehensive investigation of persistent and mobile chemicals and per- and polyfluoroalkyl substances in urine of flemish adolescents using a suspect screening approach
2022
Kim, Da-Hye | Jeong, Yunsun | Belova, Lidia | Roggeman, Maarten | Fernández, Sandra F. | Poma, Giulia | Rémy, Sylvie | Verheyen, Veerle J. | Schoeters, Greet | van Nuijs, Alexander L.N. | Covaci, Adrian
Persistent and mobile chemicals (PMs) and per- and polyfluoroalkyl substances (PFAS) are groups of chemicals that have received recent global attention due to their potential health effects on the environment and humans. In this study, exposure to a broad range of PMs and PFAS was investigated in Flemish adolescents’ urine samples (n = 83) using a suspect screening approach. For this purpose, three sample preparation methods were evaluated, and a basic liquid-liquid extraction was optimized for urine analysis based on the extraction efficiency of PMs (53–80%) and PFAS (>70%). In total, 9 PMs were identified in urine samples at confidence levels (CL) 1–3 and, among them, acetaminophen, 4-aminophenol, 2,2,6,6-tetramethyl-4-piperidone, trifluoroacetic acid (TFAA), sulisobenzone, ethyl sulfate, and 1,2-benzisothiazol-3(2H)-one 1,1-dioxide were confirmed at CL 1 and 2. In addition, the detection and identification of 2,2,6,6-tetramethyl-4-piperidone, 4-aminophenol, TFAA, and m-(2,3-epoxypropoxy)-N,N-bis(2,3-epoxypropyl) aniline (CL 3), has been reported for the first time in human urine in this study. For PFAS, only 2 compounds were identified at CL 4, implying that urine is not a suitable matrix for suspect screening of such compounds. A significant difference between sexes was observed in the detection rate of identified PMs, in particular for acetaminophen, 4-aminophenol, and sulisobenzone. The findings of this study can be used in future human biomonitoring programs, such as by including the newly identified compounds in quantitative methods or monitoring in other human matrices (e.g., serum).
Afficher plus [+] Moins [-]Ellagic acid ameliorates paraquat-induced liver injury associated with improved gut microbial profile
2022
Qi, Ming | Wang, Nan | Xiao, Yuxin | Deng, Yuankun | Zha, Andong | Tan, Bie | Wang, Jing | Yin, Yulong | Liao, Peng
Paraquat, a widely used herbicide, causes environmental pollution, and liver injury in humans and animals. As a natural compound in fruits, ellagic acid (EA) shows anti-inflammatory and antioxidant effects. This study examines the beneficial effects of dietary EA against the paraquat-induced hepatic injury and further explores the underlying molecular mechanisms using a piglet model. Post-weaning piglets are fed basal diet supplemented with 50 mg/kg, 100 mg/kg, or 200 mg/kg EA for 3 weeks. At week 2, hepatic injury is induced by 4 mg/kg paraquat followed by 7 days recovery. EA supplementation significantly mitigates paraquat-induced hepatic fibrosis, steatosis, and high apoptotic rate. In agreement, EA supplementation reduces serum pro-inflammatory levels, ameliorates inflammatory cells infiltration into hepatic tissue, which are associated with suppressed NF-κB signaling during paraquat exposure. In addition, EA supplementation significantly improves activities of antioxidative enzymes which were correlated with activated Nrf2/Keap 1 signaling during paraquat exposure. Furthermore, EA supplementation restores cecal microbial community during paraquat exposure. The protective effect of EA is strongly linked with increased relative abundance of Lactobacillus reuteri and Lactobacillus amylovorus. Taken together, EA supplementation effectively reduced the occurrence of hepatic oxidative damage and inflammation induced by paraquat through modulating cecal microbial communities, which provides a novel nutritional therapeutic strategy for hepatic injury.
Afficher plus [+] Moins [-]Lifelong exposure to pyrethroid insecticide cypermethrin at environmentally relevant doses causes primary ovarian insufficiency in female mice
2022
Ma, Xiaochen | Zhang, Wei | Song, Jingyi | Li, Feixue | Liu, Jing
Pyrethroids are a class of widely used insecticides. Our recent epidemiological study of Chinese women reported that pyrethroid exposure was positively associated with the risk of primary ovarian insufficiency (POI). In this study, we utilized cypermethrin (CP), the most frequently detected pyrethroid in the environment, to recognize how lifelong and low-dose exposure to pyrethroids affects ovarian functions and the underlying mechanism(s). Female mice were exposed to CP at doses of human dietary intake of 6.7 μg/kg/day, an acceptable daily intake (ADI) of 20 μg/kg/day, or the chronic reference dose (RfD) of 60 μg/kg/day, starting from gestational day 0.5 until 44-week-old. We assessed effects on fertility, serum hormone levels, ovarian follicular development and ovarian transcriptomic profiles. Chronic exposure to CP at doses of ADI and RfD caused a significant reduction in the size of the primordial follicle pool on postnatal day (PND) 5 and the number of all types of follicles in 44-week-old mice, lower estrogen and higher gonadotropin levels, as well as decreased fertility. Significant increase in apoptosis and decrease in cell proliferation were observed in CP-exposed ovarian follicles from PND 5 and 44-week-old mice. Ovarian transcriptomic data showed that the pro-apoptotic protein BMF and the cell cycle inhibitor p27 were significantly up-regulated in CP-exposed ovaries. Cyp17a1, Cyp19a1 and Hsd17b1 genes involved in the key steps of steroidogenesis were down-regulated in the ovaries of female mice exposed to CP. This study first reported that lifelong exposure to CP at doses of ADI or RfD caused an ovarian phenotype similar to human POI in female mice and provided a mechanistic explanation. Our findings suggest that lifelong exposure to pyrethroids of low doses, which are recommended as ‘safe’ dosages, may have a significant impact on the ovarian health of female mammals and humans.
Afficher plus [+] Moins [-]Long-term PM0.1 exposure and human blood lipid metabolism: New insight from the 33-community study in China
2022
Zhang, Wangjian | Gao, Meng | Xiao, Xiang | Xu, Shu-Li | Lin, Shao | Wu, Qi-Zhen | Chen, Gong-Bo | Yang, Bo-Yi | Hu, Liwen | Zeng, Xiao-Wen | Hao, Yuantao | Dong, Guang-Hui
Ambient particles with aerodynamic diameter <0.1 μm (PM₀.₁) have been suggested to have significant health impact. However, studies on the association between long-term PM₀.₁ exposure and human blood lipid metabolism are still limited. This study was aimed to evaluate such association based on multiple lipid biomarkers and dyslipidemia indicators. We matched the 2006–2009 average PM₀.₁ concentration simulated using the neural-network model following the WRF-Chem model with the clinical and questionnaire data of 15,477 adults randomly recruited from 33 communities in Northeast China in 2009. After controlling for social demographic and behavior confounders, we assessed the association of PM₀.₁ concentration with multiple lipid biomarkers and dyslipidemia indicators using generalized linear mixed-effect models. Effect modification by various social demographic and behavior factors was examined. We found that each interquartile range increase in PM₀.₁ concentration was associated with a 5.75 (95% Confidence interval, 3.24–8.25) mg/dl and a 6.05 (2.85–9.25) mg/dl increase in the serum level of total cholesterol and LDL-C, respectively. This increment was also associated with an odds ratio of 1.25 (1.10–1.42) for overall dyslipidemias, 1.41 (1.16, 1.73) for hypercholesterolemia, and 1.90 (1.39, 2.61) for hyperbetalipoproteinemia. Additionally, we found generally greater effect estimates among the younger participants and those with lower income or with certain behaviors such as high-fat diet. The deleterious effect of long-term PM₀.₁ exposure on lipid metabolism may make it an important toxic chemical to be targeted by future preventive strategies.
Afficher plus [+] Moins [-]Potentials of orally supplemented selenium-enriched Lacticaseibacillus rhamnosus to mitigate the lead induced liver and intestinal tract injury
2022
Jin, Han | Riaz Rajoka, Muhammad Shahid | Xu, Xiaoguang | Liao, Ning | Pang, Bing | Yan, Lu | Liu, Guanwen | Sun, Hui | Jiang, Chunmei | Shao, Dongyan | Barba, Francisco J. | Shi, Junling
Lead is a metal that exists naturally in the Earth's crust and is a ubiquitous environmental contaminant. The alleviation of lead toxicity is important to keep human health under lead exposure. Biosynthesized selenium nanoparticle (SeNPs) and selenium-enriched Lactobacillus rhamnosus SHA113 (Se-LRS) were developed in this study, and their potentials in alleviating lead-induced injury to the liver and intestinal tract were evaluated in mice by oral administration for 4 weeks. As results, oral intake of lead acetate (150 mg/kg body weight per day) caused more than 50 times and 100 times lead accumulation in blood and the liver, respectively. Liver function was seriously damaged by the lead exposure, which is indicated as the significantly increased lipid accumulation in the liver, enhanced markers of liver function injury in serum, and occurrence of oxidative stress in liver tissues. Serious injury in intestinal tract was also found under lead exposure, as shown by the decrease of intestinal microbiota diversity and occurrence of oxidative stress. Except the lead content in blood and the liver were lowered by 52% and 58%, respectively, oral administration of Se-LRS protected all the other lead-induced injury markers to the normal level. By the comparison with the effects of normal L. rhamnosus SHA113 and the SeNPs isolated from Se-LRS, high protective effects of Se-LRS can be explained as the extremely high efficiency to promote lead excretion via feces by forming insoluble mixture. These findings illustrate the developed selenium-enriched L. rhamnosus can efficiently protect the liver and intestinal tract from injury by lead.
Afficher plus [+] Moins [-]Pubertal Bisphenol A exposure increases adult rat serum testosterone by resetting pituitary homeostasis
2022
Chen, Dan | Zhao, Xingyi | Huang, Fu | Guan, Xiaoju | Tian, Jing | Ji, Minpeng | Wen, Xin | Shao, Jingjing | Xie, Jiajia | Wang, Jiexia | Chen, Haolin
Bisphenol A (BPA) is widely used by manufacturers and in consumer products. Its release in the environment may affect male reproductive function. In this study, we examined the effect of low dose (0.1 mg/kg BW), short term exposure during puberty (PD21-35) on adult rat male reproduction. The results indicated that such exposure reset growth hormone (GH) and follicular stimulating hormone (FSH) homeostasis and resulted in a significantly higher level of serum testosterone without affecting serum luteinizing hormone level. QPCR and Western blot results showed that BPA significantly up-regulated selective genes/proteins in the Leydig cell steroidogenic pathway, including steroidogenic acute regulatory protein, cytochrome P450 11A1, cytochrome P450 17A, and low-density lipoprotein receptor. RNA-Seq analysis of testicular RNAs showed that BPA significantly affected the gene profiles of multiple testicular interstitial populations without affecting germ cells. Also, GO- and KEGG-analysis suggested that IGF1-related PI3K/AKT signaling was activated, which was confirmed by the increased phosphorylation of IRS1, AKT1 and CREB. The results indicated that a low-dose, short-term BPA exposure during puberty affected the adult male rat pituitary (GH and FSH) and testis (testosterone) homeostasis.
Afficher plus [+] Moins [-]