Affiner votre recherche
Résultats 1-10 de 18
Nutrient enrichment and herbivory alter carbon balance in temperate seagrass communities
2024
Jiménez Ramos, Rocío | Brun Murillo, Fernando Guillermo | Vergara Oñate, Juan José | Hernández Carrero, Ignacio | Pérez Lloréns, José Lucas | Egea Tinoco, Luis Gonzalo | Biología
Large nutrient levels and herbivory stress, particularly when acting together, drive a variety of responses in seagrass communities that ultimately may weaken their carbon balance. An in situ three-months experiment was carried out in two contrasting seasons to address the effects of two levels of nutrient load and three levels of artificial clipping on Cymodocea nodosa plants. Nutrient enrichment shifted the community from autotrophic to heterotrophic and reduced DOC fluxes in winter, whereas enhanced community carbon metabolism and DOC fluxes in summer. Herbivory stress decreased the net primary production in both seasons, whereas net DOC release increased in winter but decreased in summer. A reduction of seagrass food-web structure was observed under both disturbances evidencing impacts on the seagrass ecosystems services by altering the carbon transfer process and the loss of superficial OC, which may finally weaken the blue carbon storage capacity of these communities.
Afficher plus [+] Moins [-]Anchoring pressure and the effectiveness of new management measures quantified using AIS data and a mobile application
2023
Bockel, Thomas | Marre, Guilhem | Delaruelle, Gwenaëlle | Holon, Florian | Boissery, Pierre | Blandin, Agathe | Mouquet, Nicolas | Deter, Julie
Large boats can have a major impact on sensitive marine habitats like seagrass meadows when anchoring. The anchoring preference of large boats and their impacts can be mapped using Automatic Identification System (AIS). We found a constant increase in the number of anchoring events with, until recently, a large part of them within the protected Posidonia oceanica seagrass meadows. French authorities adopted a new regulation in 2019 forbidding any anchoring within P. oceanica seagrass meadows for boats larger than 24 m. The number of large ships (>24 m) anchoring in P. oceanica meadows significantly decreased after the enforcement of the regulation. The surface of avoided impact thanks to the new regulation corresponds to 134 to 217 tons of carbon sequestered by the preserved meadow in 2022. This work illustrates that a strict regulation of anchoring, based on accurate habitat maps, is effective in protecting seagrass meadows.
Afficher plus [+] Moins [-]Operationalizing blue carbon principles in France: Methodological developments for Posidonia oceanica seagrass meadows and institutionalization
2024
Comte, Adrien | Barreyre, Jeanne | Monnier, Briac | De Rafael, Roman | Boudouresque, Charles-françois | Pergent, Gérard | Ruitton, Sandrine
Conservation of ecosystems is an important tool for climate change mitigation. Seagrasses, mangroves, saltmarshes and other marine ecosystems have particularly high capacities to sequester and store organic carbon (blue carbon), and are being impacted by human activities. Calls have been made to mainstream blue carbon into policies, including carbon markets. Building on the scientific literature and the French voluntary carbon standard, the ‘Label Bas-Carbone’, we develop the first method for the conservation of Posidonia oceanica seagrasses using carbon finance. This methodology assesses the emission reduction potential of projects that reduce physical impacts from boating and anchoring. We show how this methodology was institutionalized thanks to a tiered approach on key parameters including carbon stocks, degradation rates, and decomposition rates. We discuss future needs regarding (i) how to strengthen the robustness of the method, and (ii) the expansion of the method to restoration of seagrasses and to other blue carbon ecosystems.
Afficher plus [+] Moins [-]Microplastics distribution in different habitats of Ximen Island and the trapping effect of blue carbon habitats on microplastics
2022
Li, Yaxin | Huang, Runqiu | Hu, Lingling | Zhang, Chunfang | Xu, Xiangrong | Song, Li | Wang, Zhiyin | Pan, Xiangliang | Christakos, George | Wu, Jiaping
Sediments are considered to be important sinks of microplastics, but the enrichment process of microplastics by blue carbon ecosystems is poorly studied. This study analyzed the spatial distribution and temporal changes, assessed the polymer types and morphological characteristics of microplastics in sediments of five ecosystems, i.e. forests, paddy fields, mangroves, saltmarshes and bare beaches on Ximen Island, Yueqing Bay, China. The trapping effect of blue carbon (mangrove and saltmarsh) sediments on microplastic was further explored. Temporal trends in microplastic abundance showed a significant increase over the last 20 years, with the enrichment of microplastics in mangrove and saltmarsh sediments being 1.7 times as high as that in bare beach, exhibiting blue carbon vegetations have strong enrichment effect on microplastics. The dominant color, shape, size, and polymer type of microplastics in sediments were transparent, fibers and fragments, <1 mm, and polyethylene, respectively. Significant differences in the abundance and characteristics of microplastics between intertidal sediments and terrestrial soils reveal that runoff input is the main source of microplastics. This study provided the evidence of blue carbon habitats as traps of microplastics.
Afficher plus [+] Moins [-]Impact of plastic bags on the benthic system of a tropical estuary: An experimental study
2022
Clemente, Caroline C.C. | Paresque, Karla | Santos, Paulo J.P.
Plastic bags are among the most discarded waste items as they are generally only used once and are often improperly eliminated and transported by rivers and estuaries to the ocean. We developed an experimental design to mimic the effect of plastic bag deposition in a tropical estuary and investigated its short-term impact on benthic community structure. We observed a significant influence of the presence of plastic bags on the abundance, richness and diversity of benthic fauna after an eight-week exposure period. Plastic bags acted as a barrier and interfered in processes that occur at the water-sediment interface, such as organic matter and silt-clay deposition. Our results indicate that plastic bags, in addition to directly affecting benthic fauna, may alter processes such as carbon burying, known as “blue carbon”, thus making its storage in the sediment more difficult.
Afficher plus [+] Moins [-]Seagrasses and seagrass habitats in Pacific small island developing states: Potential loss of benefits via human disturbance and climate change
2020
Brodie, Gilianne | Holland, Elisabeth | N'Yeurt, Antoine De Ramon | Soapi, Katy | Hills, Jeremy
Seagrasses provide a wide range of services including food provision, water purification and coastal protection. Pacific small island developing states (PSIDS) have limited natural resources, challenging economies and a need for marine science research. Seagrasses occur in eleven PSIDS and nations are likely to benefit in different ways depending on habitat health, habitat cover and location, and species presence. Globally seagrass habitats are declining as a result of anthropogenic impacts including climate change and in PSIDS pressure on already stressed coastal ecosystems, will likely threaten seagrass survival particularly close to expanding urban settlements. Improved coastal and urban planning at local, national and regional scales is needed to reduce human impacts on vulnerable coastal areas. Research is required to generate knowledge-based solutions to support effective coastal management and protection of the existing seagrass habitats, including strenghened documentation the socio-economic and environmental services they provide. For PSIDS, protection of seagrass service benefits requires six priority actions: seagrass habitat mapping, regulation of coastal and upstream development, identification of specific threats at vulnerable locations, a critique of cost-effective restoration options, research devoted to seagrass studies and more explicit policy development.
Afficher plus [+] Moins [-]High fragility of the soil organic C pools in mangrove forests
2017
Otero, X.L. | Méndez, A. | Nóbrega, G.N. | Ferreira, T.O. | Santiso-Taboada, M.J. | Meléndez, W. | Macías, F.
Mangrove forests play an important role in biogeochemical cycle of C, storing large amounts of organic carbon. However, these functions can be controlled by the high spatial heterogeneity of these intertidal environments. In this study were performed an intensive sampling characterizing mangrove soils under different type of vegetation (Rhizophora/Avicennia/dead mangrove) in the Venezuelan coast. The soils were anoxic, with a pH~7; however other soil parameters varied widely (e.g., clay, organic carbon). Dead mangrove area showed a significant lower amounts of total organic carbon (TOC) (6.8±2.2%), in comparison to the well-preserved mangrove of Avicennia or Rhizophora (TOC=17–20%). Our results indicate that 56% of the TOC was lost within a period of 10years and we estimate that 11,219kgm−2 of CO2 was emitted as a result of the mangrove death. These results represent an average emission rate of 11.2±19.17tCO2ha−1y−1.
Afficher plus [+] Moins [-]Variability of sedimentary organic carbon in patchy seagrass landscapes
2015
Ricart, Aurora M. | York, Paul H. | Rasheed, Michael A. | Pérez Sánchez, Marta | Romero, Javier | Bryant, Catherine V. | Macreadie, Peter I.
Seagrass ecosystems, considered among the most efficient carbon sinks worldwide, encompass a wide variety of spatial configurations in the coastal landscape. Here we evaluated the influence of the spatial configuration of seagrass meadows at small scales (metres) on carbon storage in seagrass sediments. We intensively sampled carbon stocks and other geochemical properties (δ13C, particle size, depositional fluxes) across seagrass–sand edges in a Zostera muelleri patchy seagrass landscape. Carbon stocks were significantly higher (ca. 20%) inside seagrass patches than at seagrass–sand edges and bare sediments. Deposition was similar among all positions and most of the carbon was from allochthonous sources. Patch level attributes (e.g. edge distance) represent important determinants of the spatial heterogeneity of carbon stocks within seagrass ecosystems. Our findings indicate that carbon stocks of seagrass areas have likely been overestimated by not considering the influence of meadow landscapes, and have important relevance for the design of seagrass carbon stock assessments.
Afficher plus [+] Moins [-]Quantifying and modelling the carbon sequestration capacity of seagrass meadows – A critical assessment
2014
Macreadie, P.I. | Baird, M.E. | Trevathan-Tackett, S.M. | Larkum, A.W.D. | Ralph, P.J.
Seagrasses are among the planet’s most effective natural ecosystems for sequestering (capturing and storing) carbon (C); but if degraded, they could leak stored C into the atmosphere and accelerate global warming. Quantifying and modelling the C sequestration capacity is therefore critical for successfully managing seagrass ecosystems to maintain their substantial abatement potential. At present, there is no mechanism to support carbon financing linked to seagrass. For seagrasses to be recognised by the IPCC and the voluntary C market, standard stock assessment methodologies and inventories of seagrass C stocks are required. Developing accurate C budgets for seagrass meadows is indeed complex; we discuss these complexities, and, in addition, we review techniques and methodologies that will aid development of C budgets. We also consider a simple process-based data assimilation model for predicting how seagrasses will respond to future change, accompanied by a practical list of research priorities.
Afficher plus [+] Moins [-]Two decades of seagrass area change: Organic carbon sources and stock
2021
Stankovic, Milica | Hayashizaki, Ken-Ichi | Tuntiprapas, Piyalap | Rattanachot, Ekkalak | Prathep, Anchana
Although seagrass ecosystems provide various ecosystem services, the implications in correspondence with temporal changes of the meadows is lacking. In this study, we analyzed two-decade changes of the seagrass area with the organic carbon storage and the sources at Libong island in Thailand. The seagrass area covered 841 ha in 2019, after two decades of decline (3.2 and 0.6% yr⁻¹ between 2004 and 2009 and 2009–2019, respectively). Although δ¹³C was not significant between depth layers (p > 0.05), the general trend suggested that the terrestrial source of carbon is dominating bottom depth layer (31.7–37.2%), mixture of terrestrial (19.7–30.3%), seagrass (22.9–29.6%), mangrove (16.8–43.0%) and CPOM (11.2–25.4%) in the middle, and mangroves and seagrasses are dominating surface layer (28.3–66.2 and 29.3–36.5%, respectively). These trends approximately correspond to the areal changes of the meadows, as well as changes of urban area and water quality, providing detailed information on the meadow changes and possible causes.
Afficher plus [+] Moins [-]