Affiner votre recherche
Résultats 1-10 de 13
Insights into variations on dissolved organic matter of bauxite residue during soil-formation processes following 2-year column simulation
2022
Xue, Shengguo | Liu, Zheng | Fan, Jiarong | Xue, Rui | Guo, Ying | Chen, Wei | Hartley, William | Zhu, Feng
Bauxite residue, an industrial alkaline solid waste, has a low organic carbon content which hinders plant growth. Dissolved organic matter (DOM) drives many biogeochemical processes including carbon storage and soil formation in soils. Input of exogenous organic materials may provide organic carbon and accelerate soil formation processes in bauxite residue. However, the potential effects of ameliorants on the quantity and quality of DOM in bauxite residue are still poorly understood. Here, the integration of ultraviolet–visible (UV–Vis) spectra, fluorescence spectra, and parallel factor (PARAFAC) analysis were used to investigate the vertical characteristics of DOM in bauxite residue treated by PV (the combined addition of 2% phosphogypsum and 4% vermicompost, w/w) and BS (6% w/w including 4% bagasse and 2% bran) with 2-year column experiments. The content of DOM in untreated residues ranged from 0.064 to 0.096 g/kg, whilst higher contents of DOM were observed in PV (0.13 g/kg) and BS (0.26 g/kg) treatment. Meanwhile, with the increase of residue depth, the aromaticity and hydrophobic components of DOM in residue decreased, which indicated that the degree of humification of the treated residues in the upper layer was higher than that in the lower layer. Compared with BR, BS and PV treatment accumulated the related content of fulvic acid-like substance from 36.14% to 71.33% and 74.86%, respectively. The incorporation of vermicompost and biosolids increased the content of humic-like substances, whilst decreasing the content of protein-like substances in the surface layer, which may be due to the enrichment of the microbial community. During soil formation processes, the application of organic amendments reduced both salinity and alkalinity, enhanced microbial community diversity, and changed the quantity and quality of DOM in bauxite residue. These findings improve our understanding of the dynamics of DOM and response of DOM to soil formation processes in bauxite residue.
Afficher plus [+] Moins [-]Biodegradation of low-density polyethylene and polystyrene in superworms, larvae of Zophobas atratus (Coleoptera: Tenebrionidae): Broad and limited extent depolymerization
2020
Peng, Bo-Yu | Li, Yiran | Fan, Rui | Chen, Zhibin | Chen, Jiabin | Brandon, Anja M. | Criddle, Craig S. | Zhang, Yalei | Wu, Weimin
Larvae of Zophobas atratus (synonym as Z. morio, or Z. rugipes Kirsch, Coleoptera: Tenebrionidae) are capable of eating foams of expanded polystyrene (EPS) and low-density polyethylene (LDPE), similar to larvae of Tenebrio molitor. We evaluated biodegradation of EPS and LDPE in the larvae from Guangzhou, China (strain G) and Marion, Illinois, U.S. (strain M) at 25 °C. Within 33 days, strain G larvae ingested respective LDPE and PS foams as their sole diet with respective consumption rates of 58.7 ± 1.8 mg and 61.5 ± 1.6 mg 100 larvae⁻¹d⁻¹. Meanwhile, strain M required co-diet (bran or cabbage) with respective consumption rates of 57.1 ± 2.5 mg and 30.3 ± 7.7 mg 100 larvae⁻¹ d⁻¹. Fourier transform infrared spectroscopy, proton nuclear magnetic resonance, and thermal gravimetric analyses indicated oxidation and biodegradation of LDPE and EPS in the two strains. Gel permeation chromatography analysis revealed that strain G performed broad depolymerization of EPS, i.e., both weight-average molecular weight (Mw) and number-average molecular weight (Mₙ) of residual polymers decreased, while strain M performed limited extent depolymerization, i.e., Mw and Mₙ increased. However, both strains performed limited extent depolymerization of LDPE. After feeding antibiotic gentamicin, gut microbes were suppressed, and Mw and Mₙ of residual LDPE and EPS in frass were basically unchanged, implying a dependence on gut microbes for depolymerization/biodegradation. Our discoveries indicate that gut microbe-dependent LDPE and EPS biodegradation is present within Z. atratus in Tenebrionidae, but that the limited extent depolymerization pattern resulted in undigested polymers with high molecular weights in egested frass.
Afficher plus [+] Moins [-]Speciation and location of arsenic and antimony in rice samples around antimony mining area
2019
Wu, Tong-Liang | Cui, Xiao-Dan | Cui, Pei-Xin | Ata-Ul-Karim, Syed Tahir | Sun, Qian | Liu, Cun | Fan, Ting-Ting | Gong, Hua | Zhou, Dong-Mei | Wang, Yurun
Arsenic (As) and antimony (Sb) are considered as priority environmental pollutants and their accumulation in crop plants particularly in rice has posed a great health risk. This study endeavored to investigate As and Sb contents in paired soil-rice samples obtained from Xikuangshan, the world largest active Sb mining region, situated in China, and to investigate As speciation and location in rice grains. The soil and rice samples were analyzed by coupling the wet chemistry, laser ablation-inductively coupled plasma mass spectrometry (LA-ICP-MS), synchrotron-based micro X-ray fluorescence mapping (μ-XRF) and micro X-ray absorption near-edge structure (μ-XANES) spectroscopy. The results of field survey indicated that the paddy soil in the region was co-polluted by Sb (5.91–322.35 mg kg−1) and As (0.01–57.21 mg kg−1). Despite the higher Sb concentration in the soil, rice accumulated more As than Sb indicating the higher phytoavailability of As. Dimethylarsinic acid (DMA) was the predominant species (>60% on average) in the rice grains while the percentage of inorganic As species was 19%–63%. The μ-XRF mapping of the grain section revealed that the most of As was distributed and concentrated in rice husk, bran and embryo. Sb was distributed similarly to As but was not in the endosperm of rice grain based on LA-ICP-MS. The present results deepened our understanding of the As/Sb co-pollution and their association with the agricultural-product safety in the vicinity of Sb mining area.
Afficher plus [+] Moins [-]Retrospective study of methylmercury and other metal(loid)s in Madagascar unpolished rice (Oryza sativa L.)
2015
Rothenberg, Sarah E. | Mgutshini, Nomathamsanqa L. | Bizimis, Michael | Johnson-Beebout, Sarah E. | Ramanantsoanirina, Alain
The rice ingestion rate in Madagascar is among the highest globally; however studies concerning metal(loid) concentrations in Madagascar rice are lacking. For Madagascar unpolished rice (n = 51 landraces), levels of toxic elements (e.g., total mercury, methylmercury, arsenic and cadmium) as well as essential micronutrients (e.g., zinc and selenium) were uniformly low, indicating potentially both positive and negative health effects. Aside from manganese (Wilcoxon rank sum, p < 0.01), no significant differences in concentrations for all trace elements were observed between rice with red bran (n = 20) and brown bran (n = 31) (Wilcoxon rank sum, p = 0.06–0.91). Compared to all elements in rice, rubidium (i.e., tracer for phloem transport) was most positively correlated with methylmercury (Pearson's r = 0.33, p < 0.05) and total mercury (r = 0.44, p < 0.05), while strontium (i.e., tracer for xylem transport) was least correlated with total mercury and methylmercury (r < 0.01 for both), suggesting inorganic mercury and methylmercury were possibly more mobile in phloem compared to xylem.
Afficher plus [+] Moins [-]Comparative efficacy of organic and inorganic silicon fertilizers on antioxidant response, Cd/Pb accumulation and health risk assessment in wheat (Triticum aestivum L.)
2019
Huang, Hengliang | Rizwan, Muhammad | Li, Mei | Song, Furu | Zhou, Sijiang | He, Xuan | Ding, Rui | Dai, Zhihua | Yuanyuan, | Cao, Menghua | Xiong, Shuanglian | Tu, Shuxin
In wheat production areas of China, soil lead (Pb) pollution is generally accompanied by cadmium (Cd) pollution and it is of considerable significance in repairing the Cd and Pb co-contaminated soils for safe agronomic production. Organosilicon fertilizer (OSiF) is a new type of silicon (Si) fertilizer that can effectively alleviate heavy metal toxicity in plants, but the mechanisms on its heavy metal detoxification are poorly understood. A soil pot experiment was conducted to evaluate and compare the effects of two OSiFs (OSiFA and OSiFB) and an inorganic silicon fertilizer (InOSiF) on wheat heavy metal uptake and biochemical parameters in a Cd and Pb co-contaminated soil. The results demonstrated that OSiFA, OSiFB and InOSiF could alleviate the Cd and Pb toxicity of wheat, as indicated by increasing wheat grain yield by 65%, 45% and 22%, respectively. The Si fertilizers enhanced leaf gas exchange attributes and chlorophyll content, whereas diminished the oxidative damage, as indicated by a lower level of hydrogen peroxide (H2O2) and malondialdehyde (MDA) content, and lower activity of superoxide dismutase (SOD) and catalase (CAT) activity, as compared with control. Adding OSiFA, OSiFB and InOSiF increased Si uptake in roots and shoots, thus reducing Cd and Pb accumulation in the wheat shoot, bran and flour, especially, flour Cd contents by 17%, 10% and 31% respectively, flour Pb contents by 74%, 53% and 48% respectively. Also, Si fertilizers application decreased the health risk index (HRI) of both Cd and Pb. The grey correlation degrees of OSiFA, OSiFB and InOSiF are 0.72, 0.77 and 0.61, respectively, indicating that the effects of OSiFs on detoxifying Cd and Pb could be better than that of InOSiF in wheat. Thus, the use of OSiFs might be a feasible approach to reduce Cd and Pb entry into the human body through crops.
Afficher plus [+] Moins [-]Elemental bioimaging of tissue level trace metal distributions in rice seeds (Oryza sativa L.) from a mining area in China
2014
Basnet, Priyanka | Amarasiriwardena, Dulasiri | Wu, Fengchang | Fu, Zhiyou | Zhang, Tao
Rice is a staple food and major source of nutrients, but it also bioaccumulates toxic elements. In this study, laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) was used to determine tissue-level trace metal spatial distribution in rice (Oryza sativa) seeds from the active Xikuangshan Sb mine area in China. Whole grain quantified elemental bioimages showed the highest concentration of Zn (1755 mg/kg) in the embryo andmicro zones of elevated Sb, As, Pb, Cd as high as 280, 57, 31 and 830 mg/kg, respectively on the husk/bran/endosperm tissues. Bioimages suggest that both Sb and Cd may be competing with Zn for binding sites. Both Sb(III) and Sb(V) species were detected in seeds from upstream and downstream fields indicating the presence of toxic Sb(III). Brown rice is a good source of Zn, but white rice is a safer option if rice is grown in a polluted area.
Afficher plus [+] Moins [-]Water-saving technologies affect the grain characteristics and recovery of fine-grain rice cultivars in semi-arid environment
2017
Jabran, Khawar | Riaz, Muhammad | Hussain, Mubshar | Nasim, Wajid | Zaman, Umar | Shah, Fahad | Chauhan, Bhagirath Singh
Growing rice with less water is direly needed due to declining water sources worldwide, but using methods that require less water inputs can have an impact on grain characteristics and recovery. A 2-year field study was conducted to evaluate the impact of conventionally sown flooded rice and low-water-input rice systems on the grain characteristics and recovery of fine rice. Three fine grain rice cultivars—Super Basmati, Basmati 2000, and Shaheen Basmati—were grown under conventional flooded transplanted rice (CFTR), alternate wetting and drying (AWD), and aerobic rice systems. Grain characteristics and rice recovery were significantly influenced by different water regimes (production systems). Poor milling, including the lowest percentage of brown (head) rice (65.3%) and polished (white) rice (64.2–66.9%) and the highest percentage of broken brown rice (10.2%), husk (24.5%–26.3%), polished broken rice (24.7%), and bran (11.0–12.5%), were recorded in the aerobic rice system sown with Shaheen Basmati. With a few exceptions, cultivars sown in CFTR were found to possess a higher percentage of brown (head) and polished (white) rice and they had incurred the least losses in the form of brown broken rice, husk, polished broken rice, and bran. In conclusion, better grain quality and recovery of rice can be attained by growing Super Basmati under the CFTR system. Growing Shaheen Basmati under low-water-input systems, the aerobic rice system in particular, resulted in poor grain characteristics tied with less rice recovery.
Afficher plus [+] Moins [-]Effects of film mulching on the distribution of phthalate esters in wheat grains from dryland
2021
Sun, Yingying | Li, Chao | Zhang, Xinxin | Shi, Mei | Wang, Zhaohui
The application of plastic film in field crop production elevated the phthalate esters (PAEs) accumulation in wheat grains, which poses potential risks to human health. However, the variation of grain PAEs contents in different dryland areas is not clear, and the distribution of PAEs in different tissues of grains has not been studied yet. In the present study, field experiments in five sites (three provinces) with two treatments (soil with and without film mulching) were carried out to study the concentration and distribution of PAEs in grains and the effects of environmental factors on them. Results showed that the total PAE concentration (∑PAEs) in wheat grains ranged from 445 to 764 μg/kg, mainly in the forms of di-(2-ethylhexyl)-phthalate (DEHP), dibutyl phthalate (DBP), and diisobutyl phthalate (DIBP). Compared with control, total PAE concentrations in soils and wheat grains were significantly higher in treatments with film mulching. The effects of film on the proportion of PAEs in the flour and bran varied with experiment sites. Grain PAEs in the control groups presented significantly negative correlation with annual temperature, while there was a positive correlation between soil PAEs and bran PAEs in the film treatment. Results in this study are of great significance to comprehensively evaluate the effect of film mulching on grain safety in dryland wheat production.
Afficher plus [+] Moins [-]Towards simple tools to assess functional effects of contaminants on natural microbial and invertebrate sediment communities
2020
Pesce, Stéphane | Campiche, Sophie | Casado-Martinez, Carmen | Ahmed, Ayanleh Mahamoud | Bonnineau, Chloé | Dabrin, Aymeric | Lyautey, Emilie | Ferrari, Benoit J.D.
Surface sediments can accumulate contaminants that affect microorganisms and invertebrates and disturb benthic ecological functions. However, effects of contaminants on ecological functions supported by sediment communities are understudied. Here, we tested the relevance of two simple tools to assess the ecotoxicological effects of metal contamination on natural sediment communities using particulate organic matter breakdown and decomposition as a functional descriptor. To this aim, we performed a 21-day laboratory microcosm experiment to assess the individual and combined effects of Cu and As (nominal concentration of 40 mg kg⁻¹ dw each) using the bait-lamina method (cellulose, bran flakes, and active coal in PVC strips) as well as artificial tablets (cellulose, bran flakes and active coal embedded in an agar matrix). Sediment toxicity was also evaluated using the standardized ostracod toxicity test. Both the bait-lamina and artificial tablet methods showed low effects of As on organic matter breakdown and decomposition but strong effects of Cu on this important ecological function. Both also showed that the presence of Cu and As in mixture in the sediment induced total inhibition of organic matter breakdown and decomposition. The ostracod toxicity test also showed high toxicity of Cu-spiked and Cu-plus-As-spiked sediments and low toxicity of As-spiked sediments. Besides confirming that artificial organic matter substrates are relevant and useful for assessing the functional effects of contaminants on sediment micro- and macro-organism communities, these results suggest that the proposed methods offer promising perspectives for developing tools for use in assessing functional ecotoxicology in the sediment compartment.
Afficher plus [+] Moins [-]Enhanced adsorption of Cd (II) from aqueous solution by a shrimp bran modified Typha orientalis biochar
2019
Yin, Wenjun | Zhao, Congcong | Xu, Jingtao
The biochar which was characterized with well-developed facial structure and O-/N-containing functional groups could effectively remove Cd (II) from water. In this paper, Typha orientalis–based biochar (BCS) with well-developed N containing functional groups was modified with shrimp bran which was rich in crude protein for the first time. There are more well-developed O-/N-containing functional groups in the structure of BCS than that of pure Typha orientalis–based biochar without any modification (BC), and this conclusion was depended on their comparisons of Brunauer-Emmett-Teller (BET), X-ray diffraction (XRD), scanning electron microscopy (SEM), elemental analysis (EA), Boehm titration, Fourier transform infrared (FTIR), and other characterization techniques. Moreover, according to the experiment, the phenomenon that the adsorption capacity of Cd(II) on these two adsorbents (BCs) decreased with the increase of solution ionic strength could be carried out. The Cd(II) adsorption studies combined with X-ray photoelectron spectroscopy (XPS) analysis revealed that the adsorption mechanism was mainly attributed to physical microporous filtration and chemical interaction between Cd(II) and the surface functional groups (surface complexation, ion exchange, and electrostatic attraction).
Afficher plus [+] Moins [-]