Affiner votre recherche
Résultats 1-10 de 46
Formation of environmentally relevant polyhalogenated carbazoles from chloroperoxidase-catalyzed halogenation of carbazole
2018
Chen, Yanqiu | Lin, Kunde | Chen, Da | Wang, Kun | Zhou, Wenxiu | Wu, Yan | Huang, Xinwen
Polyhalogenated carbazoles (PHCs) are a class of emerging organic contaminants that have received increasing concern due to their widespread distribution and dioxin-like toxicity. Although previous studies have suggested possible natural sources of PHCs in the environment, the formation pathways are poorly understood. Here we explored the production of PHCs from halogenation of carbazole in the presence of Br⁻ and/or Cl⁻ under the catalysis of chloroperoxidase (CPO) isolated from the marine fungus Caldariomyces fumago. Overall, a total of 25 congeners including mono-to tetra-substituted chlorinated, brominated, and mixed halogenated carbazoles (with substitution patterns of –BrCl, –BrCl2, –BrCl3, –Br2Cl, –Br2Cl2, and –Br3Cl) were produced from the reactions under various conditions. The PHC product profiles were apparently dependent on the halide concentrations. In the CPO-mediated chlorination of carbazole, 3-mono- and 3,6-dichlorocarbazoles predominated in the formation products. In addition to the less abundant mixed halogenated carbazoles (-Br2Cl), 1,3,6-tri- and 1,3,6,8-tetrabromocarbazoles were the dominant products in reactions containing both Br⁻ and Cl⁻. The CPO-catalyzed halogenation of carbazole could take place in pH 3–7, but the formation products were pH dependent. Results of this study suggest that CPO-catalyzed halogenation of carbazole may play an important role in the natural formation of PHCs.
Afficher plus [+] Moins [-]RETRACTED: Trends in bromide wet deposition concentrations in the contiguous United States, 2001–2016
2018
Wetherbee, Gregory A. | Lehmann, Christopher M.B. | Kerschner, Brian M. | Ludtke, Amy S. | Green, Lee A. | Rhodes, Mark F.
This article has been retracted: please see Elsevier Policy on Article Withdrawal (https://www.elsevier.com/about/our-business/policies/article-withdrawal).This article has been retracted at the request of the authors due to the results of a detailed investigation of the data quality conducted by the Central Analytical Laboratory (CAL) after relocation to the University of Wisconsin (UW) – Wisconsin State Laboratory of Hygiene. Using a subset of the 30 samples with the highest bromide ion (Br-) concentrations, the CAL at UW found 6 samples that could not be verified or were incorrect. Because the extent of the incorrect data is unknown, the NADP Executive Committee voted unanimously in May 2019 to discontinue public access to these data, and they decided to sequester all Br- data prior to June 2018. These issues were not obvious to the authors when the paper was written.The authors apologize for the inconvenience caused.
Afficher plus [+] Moins [-]Assessing the influence of the genetically modified factor on mixture toxicological interactions in Caenorhabditis elegans: Comparison between wild type and a SOD type
2018
Li, Kai | Xu, Ya-Qian | Feng, Li | Liu, Shu-Shen
How to evaluate the ecological risk of transgenic technology is a focus of scientists because of the safety concerns raised by genetically modified (GM) organisms. Nevertheless, most studies are based on individual chemicals and always analyze the GM organism as a type of toxicant. In this study, we changed the approach and used GM organisms as the test objects with normal chemical exposure. Three types of chemicals (two substituted phenols, 4-chlorophenol and 4-nitrophenol; two ionic liquids, 1-butylpyridinium chloride and 1-butylpyridinium bromide; two pesticides, dichlorvos and glyphosate) were used to construct a six-component mixture system. The lethality to wild-type (N2) and sod-3::GFP (SOD-3) Caenorhabditis elegans was determined when they were exposed to the same mixture system after 12 and 24 h. The results showed that the pEC50 values of all of the single chemicals on SOD-3 were greater than those on N2 at 24 h. The toxicities of the single chemicals and nine mixture rays on the two strains increased with time. Notably, we discovered a significant difference between the two strains; time-dependent synergism occurred in mixtures on N2, but time-dependent antagonism occurred in mixtures on SOD-3. Finally, the strength of the synergism or antagonism turned to additive action on the two strains as the exposure time increased. These findings illustrated that the GM factor of the nematode influenced the mixture toxicological interaction at some exposure times. Compared with N2, SOD-3 were more sensitive to stress or toxic reactions. Therefore, the influence of the GM factor on mixture toxicological interactions in environmental risk assessment must be considered.
Afficher plus [+] Moins [-]17β-estradiol as precursors of Cl/Br-DBPs in the disinfection process of different water samples
2018
During chlorine disinfection process, reactions between the disinfectant and 17β-estradiol (E2) lead to the formation of halogenated disinfection byproducts (DBPs) which can be a risk to both ecosystem and human health. The degradation and transformation products of E2 in sodium hypochlorite (NaClO) disinfection processes of different water samples were investigated. The reaction kinetics research showed that the degradation rates of E2 were considerably dependent on the initial pH value and the types of water samples. In fresh water, synthetic marine aquaculture water and seawater, the reaction rate constant was 0.133 min−1, 2.067 min−1 and 2.592 min−1, respectively. The reasons for the above phenomena may be due to the different concentrations of bromide ions (Br−) in these three water samples which could promote the reaction between NaClO and E2. Furthermore, Br− could also cause the formation of brominated DBPs (Br-DBPs). The main DBPs, reaction centers and conceivable reaction pathways were explored. Seven halogenated DBPs have been observed including three chlorinated DBPs (Cl-DBPs) and four Br-DBPs. The active sites of E2 were found to be the pentabasic cyclic ring and the ortho position of the phenol moiety as well as C9-C10 position. The identified Cl/Br-DBPs were also confirmed in actual marine aquaculture water from a shrimp pond. The comparison of bio-concentration factors (BCF) values based on calculation of EPI-suite showed that the toxicities of the Br-DBPs were stronger than that of their chloride analogues. The absorbable organic halogens (AOX) analysis also suggested that the DBPs produced in the marine aquaculture water were more toxic than that in the fresh water system.
Afficher plus [+] Moins [-]Ionic profile of honey as a potential indicator of botanical origin and global environmental pollution
2013
Fermo, Paola | Beretta, Giangiacomo | Maffei Facino, Roberto | Gelmini, Fabrizio | Piazzalunga, Andrea
Aim of this study was to determine by Ion Chromatography ions (Na+, Ca++, Mg++, NH4+, Cl−, Br−, SO42−, NO3−, PO43−) in honeys (honeydew and floral nectar honeys) from different Italian Regions and from countries of the Western Balkan area. The compositional data were processed by multivariate analysis (PCA and HCA). Arboreal honeydew honeys from the Western Balkans had higher concentrations (from two to three times) of some environmental pollutants (Br−, SO42− and PO43− contents), due to industrial and agricultural activities, than those from Italian regions. The cationic profiles were very similar in both groups. Multivariate analysis indicated a clear difference between nectar honeys and arboreal/honeydew honeys (recognition of the botanical origin). These findings point to the potential of ionic constituents of honey as indicators of environmental pollution, botanical origin and authenticity.
Afficher plus [+] Moins [-]Halide salts accelerate degradation of high explosives by zerovalent iron
2007
Kim, J.S. | Shea, P.J. | Yang, J.E. | Kim, J.E.
Zerovalent iron (Fe0, ZVI) has drawn great interest as an inexpensive and effective material to promote the degradation of environmental contaminants. A focus of ZVI research is to increase degradation kinetics and overcome passivation for long-term remediation. Halide ions promote corrosion, which can increase and sustain ZVI reactivity. Adding chloride or bromide salts with Fe0 (1% w/v) greatly enhanced TNT, RDX, and HMX degradation rates in aqueous solution. Adding Cl or Br salts after 24 h also restored ZVI reactivity, resulting in complete degradation within 8 h. These observations may be attributed to removal of the passivating oxide layer and pitting corrosion of the iron. While the relative increase in degradation rate by Cl- and Br- was similar, TNT degraded faster than RDX and HMX. HMX was most difficult to remove using ZVI alone but ZVI remained effective after five HMX reseeding cycles when Br- was present in solution. The addition of halide ions promotes the degradation of high explosives by zerovalent iron.
Afficher plus [+] Moins [-]Natural attenuation of xenobiotic compounds: anaerobic field injection experiment [Grindsted landfill]
1995
Ruegge, K. | Bjerg, P.L. | Mosbaek, H. | Christensen, T.H. (Danmarks Tekniske Univ., Lyngby (Denmark). Grundvandscentret)
Expanding Quantification of Arsenic in Water to 0 μg L−1 with a Field Test Kit: Substituting 0.4% M/V Silver Nitrate as the Colorimetric Reagent; Employing Digital Image Analysis
2018
Kearns, JamesK. | Edson, CodyB.
This study confronts the questionable reliability and accuracy of field test kits distributed globally to determine arsenic in drinking water. Because kits are the primary method of arsenic analysis in the areas most affected, an alternate, nontoxic formulation is needed to provide accurate results. Hypothesizing that introducing silver nitrate as the reagent in test kits could successfully substitute for restricted mercuric bromide, the study found that the reformulated kits provided reliable, precise, and accurate results over a broader range of contamination. Digital image analysis was used to examine the blue color value produced when arsine reacts with silver nitrate impregnated test strips. An optimal concentration of AgNO₃ exhibiting the greatest linearity was determined by graphical comparison and the color intensity of the strips observed to be inversely proportional to the concentration of As (III). Adapted field test kits were then constructed to examine water samples ranging in arsenic contamination from 0 to 50 μg L⁻¹. A series of reactions was completed to demonstrate reproducibility and test for the accuracy of the procedure. Statistical examination of colorimetrically quantified results confirmed the hypothesis that silver nitrate can reliably and precisely expand the kit’s range of detection while maintaining its low cost, quick assessment, and uncomplicated technique. This new method, using 0.4% m/v AgNO₃ as a reagent for the Gutzeit reaction, was able to distinguish between concentrations of 0, 5, 10, 15, and 50 μg L⁻¹ at the 95% confidence level.
Afficher plus [+] Moins [-]Effects of the Hydraulic Retention Time on Pig Slurry Purification by Constructed Wetlands and Stabilization Ponds
2016
The overuse of pig slurry for fertilization purposes could involve an environmental risk. Pig slurry has been scarcely treated using constructed wetlands and stabilization ponds. Further information on hydraulic retention time comparison at full-scale in farms is desired. This survey aims to optimize a low-cost system comparing two hydraulic retention times (3 and 7 days) to purify pig slurry. Physical, chemical and microbial parameters were tested. A mechanical separator provided homogenous influent to feed the constructed wetland. Seven days of retention presented higher COD and N removal while 3 days of retention was more effective to remove TP and SO₄ ²⁻ in the constructed wetland. However, higher removal efficiencies were registered performing 7 days of retention for Mn (148.1 %), TP (113.4 %), KN (102.6 %), COD (102.5 %), NH₄ ⁺-N (94.0 %), TC (87.9 %), Cu (64.2 %), FS (47.4 %), NO₃ ⁻ (36.6 %), Ca²⁺ (32.1 %), and Br⁻ (26.0 %) in the whole system, pointing out the positive effect of the storage pond. Though the main potential pollutants were effectively reduced, parameters such as Fe, SO₄ ²⁻, SS, Zn and NO₂ ⁻ increased after purification.
Afficher plus [+] Moins [-]Displacement of Br− and P22 in a Wetland Environment
2015
Vidales-Contreras, Juan A. | Rodríguez Fuentes, Humberto | Luna-Maldonado, Alejandro I. | Hernandez-Escareño, Jesus J.
Relative displacement of bromide (Br⁻) and coliphage P22 was analyzed in surface water and vadose zone solution from a 3-ha surface flow constructed wetland. In the vadose zone, water samples at 0.3-, 0.76-, 1.5-, and 3-m depth were collected to quantify Br⁻ and P22 simultaneously added into the wetland influent for a transport study. When P22 was detected, Br⁻ arrived earlier to the monitoring depths than the phage suggesting that preferential flow facilitated P22 displacement in the vadose zone. Concentrations for both tracers indicated that bacteriophage removal through the vadose zone profile was exceeding 99.21 % of the peak concentration observed in surface water samples. For transport parameter estimation, the temporal moment method (MOM) was used to calculate convective velocity (v) and longitudinal dispersion coefficient (D) from the outlet Br⁻ breakthrough curve. The transport parameters were estimated to be 55.7 m day⁻¹ and 1652 m² day⁻¹ for v and D, respectively. For P22 simulation, a first-order removal coefficient of 0.3 day⁻¹ (R ² = 0.943) was assessed. The observed results suggest that this method can be applied for solute transport simulation in constructed wetlands.
Afficher plus [+] Moins [-]