Affiner votre recherche
Résultats 1-10 de 92
Near-source air quality impact of a distributed natural gas combined heat and power facility Texte intégral
2019
Yang, Bo | Gu, Jiajun | Zhang, Tong | Zhang, K Max
The wide adoption of combined heat and power (CHP) can not only improve energy efficiency, but also strengthens energy system resiliency. While CHP reduces overall emissions compared to generating the same amount of electricity and heat separately, its on-site nature also means that CHP facilities operate in populated areas, raising concerns over their near-source air quality impact. Evaluation of the near-source impact of distributed CHP is limited by emission data availability, especially in terms of particulate matter (PM). In this paper, we report on stack emission testing results of a community-scale CHP plant with two natural gas turbine units (15 MW each) from measurements conducted in both 2010 and 2015, and assess the near-source air quality impact using an integrated modeling framework using the stack test results, site-specific meteorological data and terrain profiles with buildings. The NOx removal efficiency by selective catalytic reduction (SCR) is estimated to be ∼83% according to the emission testing. The integrated framework employs AERMOD to screen air quality in a 2.7 km × 2.3 km domain from 2011 to 2015 to identify the highest ground-level concentrations (GLCs). Examining the corresponding meteorological conditions, we find that those high GLCs appeared during the stable atmospheric boundary layer with relative high wind speed. Next, the worse-case scenarios identified from the screening process are simulated using the detailed Unsteady Reynolds Averaged Navier-Stokes (URANS) model coupled with a chemistry solver. The results generally show low GLCs of primary PM₂.₅ for this case study. However, our analysis also suggests greater building downwash impacts with the presence of taller and denser urban structures. Therefore, the near-source impact of natural gas-fired CHP in large metropolitan areas is worthy of further investigation.
Afficher plus [+] Moins [-]Geolocation of premises subject to radon risk: Methodological proposal and case study in Madrid Texte intégral
2019
Frutos, Borja | Martín-Consuegra, Fernando | Alonso, Carmen | de Frutos, Fernando | Sanchez, Virginia | García-Talavera, Marta
Useful information on the potential radon risk in existing buildings can be obtained by combining data from sources such as potential risk maps, the ‘Sistema de Información sobre Ocupación del Suelo de España’ (SIOSE) [information system on land occupancy in Spain], cadastral data on built property and population surveys. The present study proposes a method for identifying urban land, premises and individuals potentially subject to radon risk. The procedure draws from geographic information systems (GIS) pooled at the municipal scale and data on buildings possibly affected. The method quantifies the magnitude of the problem in the form of indicators on the buildings, number of premises and gross floor area that may be affected in each risk category. The findings are classified by type of use: residential, educational or office. That information may guide health/prevention policies by targeting areas to be measured based on risk category, or protection policies geared to the construction industry by estimating the number of buildings in need of treatment or remediation. Application of the methodology to Greater Madrid showed that 47% of the municipalities have houses located in high radon risk areas. Using cadastral data to zoom in on those at highest risk yielded information on the floor area of the vulnerable (basement, ground and first storey) premises, which could then be compared to the total. In small towns, the area affected differed only scantly from the total, given the substantial proportion of low-rise buildings in such municipalities.
Afficher plus [+] Moins [-]How tall buildings affect turbulent air flows and dispersion of pollution within a neighbourhood Texte intégral
2018
Aristodemou, Elsa | Boganegra, Luz Maria | Mottet, Laetitia | Pavlidis, Dimitrios | Constantinou, Achilleas | Pain, Christopher | Robins, Alan | ApSimon, H. M. (Helen M.)
The city of London, UK, has seen in recent years an increase in the number of high-rise/multi-storey buildings (“skyscrapers”) with roof heights reaching 150 m and more, with the Shard being a prime example with a height of ∼310 m. This changing cityscape together with recent plans of local authorities of introducing Combined Heat and Power Plant (CHP) led to a detailed study in which CFD and wind tunnel studies were carried out to assess the effect of such high-rise buildings on the dispersion of air pollution in their vicinity. A new, open-source simulator, FLUIDITY, which incorporates the Large Eddy Simulation (LES) method, was implemented; the simulated results were subsequently validated against experimental measurements from the EnFlo wind tunnel. The novelty of the LES methodology within FLUIDITY is based on the combination of an adaptive, unstructured, mesh with an eddy-viscosity tensor (for the sub-grid scales) that is anisotropic. The simulated normalised mean concentrations results were compared to the corresponding wind tunnel measurements, showing for most detector locations good correlations, with differences ranging from 3% to 37%. The validation procedure was followed by the simulation of two further hypothetical scenarios, in which the heights of buildings surrounding the source building were increased. The results showed clearly how the high-rise buildings affected the surrounding air flows and dispersion patterns, with the generation of “dead-zones” and high-concentration “hotspots” in areas where these did not previously exist. The work clearly showed that complex CFD modelling can provide useful information to urban planners when changes to cityscapes are considered, so that design options can be tested against environmental quality criteria.
Afficher plus [+] Moins [-]Occurrence and overlooked sources of the biocide carbendazim in wastewater and surface water Texte intégral
2018
Merel, Sylvain | Benzing, Saskia | Gleiser, Carolin | Di Napoli-Davis, Gina | Zwiener, Christian
Carbendazim is a fungicide commonly used as active substance in plant protection products and biocidal products, for instance to protect facades of buildings against fungi. However, the subsequent occurrence of this fungicide and potential endocrine disruptor in the aqueous environment is a major concern. In this study, high resolution mass spectrometry shows that carbendazim can be detected with an increasing abundance from the source to the mouth of the River Rhine. Unexpectedly, the abundance of carbendazim correlates poorly with that of other fungicides used as active ingredients in plant protection products (r² of 0.32 for cyproconazole and r² of 0.57 for propiconazole) but it correlates linearly with that of pharmaceuticals (r² of 0.86 for carbamazepine and r² of 0.89 for lamotrigine). These results suggest that the occurrence of carbendazim in surface water comes mainly from the discharge of treated domestic wastewater. This hypothesis is further confirmed by the detection of carbendazim in wastewater effluents (n = 22). In fact, bench-scale leaching tests of textiles and papers revealed that these materials commonly found in households could be a source of carbendazim in domestic wastewater. Moreover, additional river samples collected nearby two paper industries indicate that the discharge of their treated process effluents is also a source of carbendazim in the environment. While characterizing paper and textile as overlooked sources of carbendazim, this study also shows the biocide as a possible ubiquitous wastewater contaminant that would require further systematic and worldwide monitoring due to its toxicological properties.
Afficher plus [+] Moins [-]Vertical profiles of lung deposited surface area concentration of particulate matter measured with a drone in a street canyon Texte intégral
2018
Kuuluvainen, Heino | Poikkimäki, Mikko | Järvinen, Anssi | Kuula, Joel | Irjala, Matti | Dal Maso, Miikka | Keskinen, Jorma | Timonen, Hilkka | Niemi, Jarkko V. | Rönkkö, Topi
The vertical profiles of lung deposited surface area (LDSA) concentration were measured in an urban street canyon in Helsinki, Finland, by using an unmanned aerial system (UAS) as a moving measurement platform. The street canyon can be classified as an avenue canyon with an aspect ratio of 0.45 and the UAS was a multirotor drone especially modified for emission measurements. In the experiments of this study, the drone was equipped with a small diffusion charge sensor capable of measuring the alveolar LDSA concentration of particles. The drone measurements were conducted during two days on the same spatial location at the kerbside of the street canyon by flying vertically from the ground level up to an altitude of 50 m clearly above the rooftop level (19 m) of the nearest buildings. The drone data were supported by simultaneous measurements and by a two-week period of measurements at nearby locations with various instruments. The results showed that the averaged LDSA concentrations decreased approximately from 60 μm2/cm3 measured close to the ground level to 36–40 μm2/cm3 measured close to the rooftop level of the street canyon, and further to 16–26 μm2/cm3 measured at 50 m. The high-resolution measurement data enabled an accurate analysis of the functional form of vertical profiles both in the street canyon and above the rooftop level. In both of these regions, exponential fits were used and the parameters obtained from the fits were thoroughly compared to the values found in literature. The results of this study indicated that the role of turbulent mixing caused by traffic was emphasized compared to the street canyon vortex as a driving force of the dispersion. In addition, the vertical profiles above the rooftop level showed a similar exponential decay compared to the profiles measured inside the street canyon.
Afficher plus [+] Moins [-]Microenvironmental air quality impact of a commercial-scale biomass heating system Texte intégral
2017
Tong, Zheming | Yang, Bo | Hopke, Philip K. | Zhang, K Max
Initiatives to displace petroleum and climate change mitigation have driven a recent increase in space heating with biomass combustion. However, there is ample evidence that biomass combustion emits significant quantities of health damaging pollutants. We investigated the near-source micro-environmental air quality impact of a biomass-fueled combined heat and power system equipped with an electrostatic precipitator (ESP) in Syracuse, NY. Two rooftop sampling stations with PM2.5 and CO2 analyzers were established in such that one could capture the plume while the other one served as the background for comparison depending on the wind direction. Four sonic anemometers were deployed around the stack to quantify spatially and temporally resolved local wind patterns. Fuel-based emission factors were derived based on near-source measurement. The Comprehensive Turbulent Aerosol Dynamics and Gas Chemistry (CTAG) model was then applied to simulate the spatial variations of primary PM2.5 without ESP. Our analysis shows that the absence of ESP could lead to an almost 7 times increase in near-source primary PM2.5 concentrations with a maximum concentration above 100 μg m−3 at the building rooftop. The above-ground “hotspots” would pose potential health risks to building occupants since particles could penetrate indoors via infiltration, natural ventilation, and fresh air intakes on the rooftop of multiple buildings. Our results demonstrated the importance of emission control for biomass combustion systems in urban area, and the need to take above-ground pollutant “hotspots” into account when permitting distributed generation. The effects of ambient wind speed and stack temperature, the suitability of airport meteorological data on micro-environmental air quality were explored, and the implications on mitigating near-source air pollution were discussed.
Afficher plus [+] Moins [-]Gas–particle phase partitioning and particle size distribution of chlorinated and brominated polycyclic aromatic hydrocarbons in haze Texte intégral
2017
Jin, Rong | Zheng, Minghui | Yang, Hongbo | Yang, Lili | Wu, Xiaolin | Xu, Yang | Liu, Guorui
Chlorinated and brominated polycyclic aromatic hydrocarbons (Cl/Br-PAHs) are emerging semi-volatile organic pollutants in haze-associated particulate matter (PM). Their gas–particle phase partitioning and distribution among PM fractions have not been clarified. Clarification would increase understanding of atmospheric behavior and health risks of Cl/Br-PAHs. In this study, samples of the gas phase and 4 PM phases (aerodynamic diameters (dae) > 10 μm, 2.5–10 μm, 1.0–2.5 μm, and <1.0 μm) were collected simultaneously during haze events in Beijing and analyzed. Normalized histogram distribution indicated that the Cl/Br-PAHs tended to adhere to fine particles. Over 80% of the Cl-PAHs and 70% of the Br-PAHs were associated with fine PM (dae < 2.5 μm). The gas–particle phase partitioning and PM distribution of Cl/Br-PAHs when heating of buildings was required, which was associated with haze events, were obviously different from those when heating was not required. The relationship between the logarithmic geometric mean diameters of the Cl/Br-PAH congeners and reciprocal of the temperature (1/T) suggested that low air temperatures during the heating period could lead to high proportions of Cl/Br-PAHs in the fine particles. Increased coal burning during the heating period also contributed to high Cl/Br-PAH loads in the fine particles.
Afficher plus [+] Moins [-]Particulate-bound polycyclic aromatic hydrocarbon sources and determinants in residential homes Texte intégral
2016
Cattaneo, Andrea | Fermo, Paola | Urso, Patrizia | Perrone, Maria Grazia | Piazzalunga, Andrea | Tarlassi, Jessica | Carrer, Paolo | Cavallo, Domenico Maria
Human exposure to polycyclic aromatic hydrocarbons (PAHs) in indoor environments can be particularly relevant because people spend most of their time inside buildings, especially in homes. This study aimed to investigate the most important particle-bound PAH sources and exposure determinants in PM2.5 samples collected in 19 homes located in northern Italy. Complementary information about ion content in PM10 was also collected in 12 of these homes. Three methods were used for the identification of PAH sources and determinants: diagnostic ratios with principal component and hierarchical cluster analyses (PCA and HCA), chemical mass balance (CMB) and linear mixed models (LMMs). This combined and tiered approach allowed the infiltration of outdoor PAHs into indoor environments to be identified as the most important source in winter, with a relevant role played by biomass burning and traffic exhausts to be identified as a general source of PAHs in both seasons. Tobacco smoke exhibited an important impact on PAH levels in smokers' homes, whereas in the whole sample, cooking food and natural gas sources played a minor or negligible role. Nitrate, sulfate and ammonium were the main inorganic constituents of indoor PM10 owing to the secondary formation of ammonium sulfates and nitrates.
Afficher plus [+] Moins [-]Trematomus bernacchii as an indicator of POP temporal trend in the Antarctic seawaters Texte intégral
2016
Cincinelli, Alessandra | Martellini, Tania | Pozo, Karla | Kukučka, Petr | Audy, Ondřej | Corsolini, Simonetta
The occurrence of POPs in remote areas, such as Antarctica, is the result of their ability to udergo Long Range Transport (LRT) in the atmosphere, precipitation and cold condensation.In this study, both recent levels of various POPs in Trematomus bernacchii and their changes in roughly three decades were determined in order to evaluate trends of POPs in Antarctic benthic seawaters. In fact, Trematomus bernacchii is considered a good sentinel bio-indicator for monitoring not only the extent of contamination by POPs in the Antarctic aquatic ecosystem, but also changes in Antarctic ecosystem quality and trends.A slight decreasing PCB trend was detected during 30-years time span (from early 1980's to 2010) in the circumantarctic seawaters. Two higher peaks of concentrations were reported in 2001 and 2005 in the Ross Sea and they may reflect the ice melting of icebergs.Because fire risk is very high in Antarctica due to the very dry air, a large use of flame retardants in buildings and furniture of stations is highly probable; moreover, many stations were built when there were no restrictions on flame retardants use. The PBDE levels in the T. bernacchii from 2001 to 2011 ranged 0.05–0.35 pg/g and were of the same order of magnitude in 2001/2011 and in 2002/2005, with a maximum value in 2005 (0.35 pg/g).Comparable concentrations of HCB, HCHs PCDDs and PCDFs are available only for few seasons: all these compounds showed a decreasing temporal trends and their concentrations were one or more order of magnitude lower in 2000s–2010s.
Afficher plus [+] Moins [-]Do outdoor environmental noise and atmospheric NO2 levels spatially overlap in urban areas? Texte intégral
2016
Tenailleau, Quentin M. | Bernard, Nadine | Pujol, Sophie | Parmentier, Anne-Laure | Boilleaut, Mathieu | Houot, Hélène | Joly, Daniel | Mauny, Frédéric
The urban environment holds numerous emission sources for air and noise pollution, creating optimum conditions for environmental multi-exposure situations. Evaluation of the joint-exposure levels is the main obstacle for multi-exposure studies and one of the biggest challenges of the next decade. The present study aims to describe the noise/NO2 multi-exposure situations in the urban environment by exploring the possible discordant and concordant situations of both exposures. Fine-scale diffusion models were developed in the European medium-sized city of Besançon (France), and a classification method was used to evaluate the multi-exposure situations in the façade perimeter of 10,825 buildings. Although correlated (Pearson's r = 0.64, p < 0.01), urban spatial distributions of the noise and NO2 around buildings do not overlap, and 30% of the buildings were considered to be discordant in terms of the noise and NO2 exposure levels. This discrepancy is spatially structured and associated with variables describing the building's environment. Our results support the presence of several co-existing, multi-exposure situations across the city impacted by both the urban morphology and the emission and diffusion/propagation phases of each pollutant. Identifying the mechanisms of discrepancy and convergence of multi-exposure situations could help improve the health risk assessment and public health.
Afficher plus [+] Moins [-]