Affiner votre recherche
Résultats 1-10 de 133
Measurement of dry deposition to vegetative surfaces.
1986
Dasch J.M.
Consequences of elevated CO2 and O3 on birch canopy structure
2002
Kull, O. (University of Tartu, Tartu (Estonia). Institute of Botany and Ecology) | Tulva, I. | Vapaavuori, E.
We studied elevated CO2 and ozone effects in single and in combination on crown structure of two Betula pendula clones. Shoot ramification, shoot length, number of metamers, leaves and buds were measured at four heights in every tree. Chamber effect was substantial on sylleptic branching and on shoot length and ramification. However these responses differed between the clones. Ozone treatment affected shoot length and caused slight decrease in shoot ramification. Elevated CO2 affected appearance of long shoots in complex manner, but in lower crown positions CO2 caused increased number of long shoots in both clones
Afficher plus [+] Moins [-]Evaluating the potential of urban areas for bat conservation with citizen science data
2022
Lewanzik, Daniel | Straka, Tanja M. | Lorenz, Julia | Marggraf, Lara | Voigt-Heucke, Silke | Schumann, Anke | Brandt, Miriam | Voigt, Christian C.
Global change, including urbanisation, threatens many of the >1400 bat species. Nevertheless, certain areas within highly urbanised cities may be suitable to harbour bat populations. Thus, managing urban habitats could contribute to bat conservation. Here, we wanted to establish evidence-based recommendations on how to improve urban spaces for the protection of bats. In a team effort with >200 citizen scientists, we recorded bat vocalisations up to six times over the course of 2 years at each of 600 predefined sites in the Berlin metropolitan area. For each species we identified the preferred and non-preferred landscape features. Our results show that artificial light at night (ALAN) had a negative impact on all species. For soprano pipistrelles and mouse-eared bats ALAN had the largest effect sizes among all environmental predictors. Canopy cover and open water were especially important for bat species that forage along vegetation edges and for trawling bats, respectively. Occurrence probability of species foraging in open space decreased with increasing distance to water bodies. On a larger scale, impervious surfaces tended to have positive effects on some species that are specialised on foraging along edge structures. Our study constitutes an important contribution to the growing body of literature showing that despite the many negative impacts of urbanisation on wildlife, urban environments can harbour bat populations if certain conditions are met, such as access to vegetation and water bodies and low levels of ALAN. Our findings are of high relevance for urban planners and conservationists, as they allow inferences on how to manage urban spaces in a bat-friendly way. We recommend limiting ALAN to the minimum necessary and maintaining and creating uninterrupted vegetated corridors between areas with high levels of canopy cover and water bodies, in which ALAN should be entirely avoided.
Afficher plus [+] Moins [-]Exploring new strategies for ozone-risk assessment: A dynamic-threshold case study
2021
Conte, A. | Otu-Larbi, F. | Alivernini, A. | Hoshika, Y. | Paoletti, E. | Ashworth, K. | Fares, S.
Tropospheric ozone is a dangerous atmospheric pollutant for forest ecosystems when it penetrates stomata. Thresholds for ozone-risk assessment are based on accumulated stomatal ozone fluxes such as the Phytotoxic Ozone Dose (POD). In order to identify the effect of ozone on a Holm oak forest in central Italy, four flux-based ozone impact response functions were implemented and tested in a multi-layer canopy model AIRTREE and evaluated against Gross Primary Productivity (GPP) obtained from observations of Eddy Covariance fluxes of CO₂. To evaluate if a clear phytotoxic threshold exists and if it changes during the year, six different detoxifying thresholds ranging between 0 and 5 nmol O₃ m⁻² s⁻¹ were tested.The use of species-specific rather than more general response functions based on plant functional types (PFT) increased model accuracy (RMSE reduced by up to 8.5%). In the case of linear response functions, a threshold of 1 nmol m⁻² s⁻² produced the best results for simulations of the whole year, although the tolerance to ozone changed seasonally, with higher tolerance (5 nmol m⁻² s⁻¹ or no ozone impact) for Winter and Spring and lower thresholds in Summer and Fall (0–1 nmol m⁻² s⁻¹). A “dynamic threshold” obtained by extracting the best daily threshold values from a range of different simulations helped reduce model overestimation of GPP by 213 g C m⁻² y⁻¹ and reduce RMSE up to 7.7%. Finally, a nonlinear ozone correction based on manipulative experiments produced the best results when no detoxifying threshold was applied (0 nmol O₃ m⁻² s⁻¹), suggesting that nonlinear functions fully account for ozone detoxification. The evidence of seasonal changes in ozone tolerance points to the need for seasonal thresholds to predict ozone damage and highlights the importance of performing more species-specific manipulative experiments to derive response functions for a broad range of plant species.
Afficher plus [+] Moins [-]Comparison of the suitability of plant species for greenbelt construction based on particulate matter capture capacity, air pollution tolerance index, and antioxidant system
2020
Zhang, Weiyuan | Zhang, Yuzhen | Gong, Jirui | Yang, Bo | Zhang, Zihe | Wang, Biao | Zhu, Chenchen | Shi, Jiayu | Yue, Kexin
Particulate matter (PM) pollution is an urgent urban environmental problem. However, plants can mitigate this pollution by filtering the air. Combining the PM capture capacity with the air pollution tolerance could be better evaluate the suitability of greenbelt plants. We selected nine dominant roadside plants growing at two sites in Beijing, and compared their PM capture capacity, morphological characteristics, biochemical characteristics, and air pollution tolerance index (APTI). Sophora japonica had the highest PM capture capacity (362.98 μg cm⁻²), and its wax layers could trap large amounts of PM₂.₅; this high efficiency is important for successful phytoremediation. Sophora japonica. Sabina chinensis, Ulmus pumila, and Euonymus japonicus also showed relatively high PM capture capacity. This is due to their complex cuticular wax layers, short petioles, rough surfaces, high stomata density, and dense canopy structures which reduce the possibility of resuspension of captured PM. Amount of PM captured per unit leaf area had a significant positive effect on the degree of membrane lipid peroxidation, indicating that species with high PM capture capacity suffered higher oxidative stresses. Air pollution showed the strongest negative effect size on chlorophyll contents of E. japonicas. While, S. japonica, S. chinensis, and U. pumila could prevent chlorophyll content decline under severe oxidative stress. Sophora japonica also had the highest APTI at both sites, indicating this species had the greatest tolerance to air pollution. Our findings suggest that S. japonica would be the most suitable species for greenbelt construction in Beijing, followed by S. chinensis, E. japonicus, and U. pumila.
Afficher plus [+] Moins [-]Determining broad scale associations between air pollutants and urban forestry: A novel multifaceted methodological approach
2019
Douglas, Ashley N.J. | Irga, Peter J. | Torpy, Fraser R.
Global urbanisation has resulted in population densification, which is associated with increased air pollution, mainly from anthropogenic sources. One of the systems proposed to mitigate urban air pollution is urban forestry. This study quantified the spatial associations between concentrations of CO, NO₂, SO₂, and PM₁₀ and urban forestry, whilst correcting for anthropogenic sources and sinks, thus explicitly testing the hypothesis that urban forestry is spatially associated with reduced air pollution on a city scale. A Land Use Regression (LUR) model was constructed by combining air pollutant concentrations with environmental variables, such as land cover type and use, to develop predictive models for air pollutant concentrations. Traffic density and industrial air pollutant emissions were added to the model as covariables to permit testing of the main effects after correcting for these air pollutant sources. It was found that the concentrations of all air pollutants were negatively correlated with tree canopy cover and positively correlated with dwelling density, population density and traffic count. The LUR models enabled the establishment of a statistically significant spatial relationship between urban forestry and air pollution mitigation. These findings further demonstrate the spatial relationships between urban forestry and reduced air pollution on a city-wide scale, and could be of value in developing planning policies focused on urban greening.
Afficher plus [+] Moins [-]An increase in precipitation exacerbates negative effects of nitrogen deposition on soil cations and soil microbial communities in a temperate forest
2018
Shi, Leilei | Zhang, Hongzhi | Liu, Tao | Mao, Peng | Zhang, Weixin | Shao, Yuanhu | Fu, Shenglei
World soils are subjected to a number of anthropogenic global change factors. Although many previous studies contributed to understand how single global change factors affect soil properties, there have been few studies aimed at understanding how two naturally co-occurring global change drivers, nitrogen (N) deposition and increased precipitation, affect critical soil properties. In addition, most atmospheric N deposition and precipitation increase studies have been simulated by directly adding N solution or water to the forest floor, and thus largely neglect some key canopy processes in natural conditions. These previous studies, therefore, may not realistically simulate natural atmospheric N deposition and precipitation increase in forest ecosystems. In a field experiment, we used novel canopy applications to investigate the effects of N deposition, increased precipitation, and their combination on soil chemical properties and the microbial community in a temperate deciduous forest. We found that both soil chemistry and microorganisms were sensitive to these global change factors, especially when they were simultaneously applied. These effects were evident within 2 years of treatment initiation. Canopy N deposition immediately accelerated soil acidification, base cation depletion, and toxic metal accumulation. Although increased precipitation only promoted base cation leaching, this exacerbated the effects of N deposition. Increased precipitation decreased soil fungal biomass, possible due to wetting/re-drying stress or to the depletion of Na. When N deposition and increased precipitation occurred together, soil gram-negative bacteria decreased significantly, and the community structure of soil bacteria was altered. The reduction of gram-negative bacterial biomass was closely linked to the accumulation of the toxic metals Al and Fe. These results suggested that short-term responses in soil cations following N deposition and increased precipitation could change microbial biomass and community structure.
Afficher plus [+] Moins [-]Developing ozone critical levels for multi-species canopies of Mediterranean annual pastures
2017
Calvete-Sogo, H. | González Fernández, I. | García-Gómez, H. | Alonso, R. | Elvira, S. | Sanz, J. | Bermejo-Bermejo, V.
Ozone (O3) critical levels (CLe) are still poorly developed for herbaceous vegetation. They are currently based on single species responses which do not reflect the multi-species nature of semi-natural vegetation communities. Also, the potential effects of other factors like the nitrogen (N) input are not considered in their derivation, making their use uncertain under natural conditions.Exposure- and dose-response relationships were derived from two open-top chamber experiments exposing a mixture of 6 representative annual Mediterranean pasture species growing in natural soil to 4 O3 fumigation levels and 3 N inputs. The Deposition of O3 and Stomatal Exchange model (DO3SE) was modified to account for the multi-species nature of the canopy following a big-leaf approach. This new approach was used for estimating a multi-species phytotoxic O3 dose (PODy-MS). Response relationships were derived based on O3 exposure (AOT40) and flux (PODy-MS) indices.The treatment effects were similar in the two seasons: O3 reduced the aboveground biomass growth and N modulated this response. Gas exchange rates presented a high inter-specific variability and important inter-annual fluctuations as a result of varying growing conditions during the two years. The AOT40-based relationships were not statistically significant except when the highest N input was considered alone. In contrast, PODy-MS relationships were all significant but for the lowest N input level. The influence of the N input on the exposure- and dose-response relationships implies that N can modify the O3 CLe. However, this is an aspect that has not been considered so far in the methodologies for establishing O3 CLe. Averaging across N input levels, a multi-species O3 CLe (CLef-MS) is proposed POD1-MS = 7.9 mmol m⁻², accumulated over 1.5 month with a 95% confidence interval of (5.9, 9.8). Further efforts will be needed for comparing the CLef-MS with current O3 CLef based on single species responses.
Afficher plus [+] Moins [-]Characterization and source apportionment of size-segregated atmospheric particulate matter collected at ground level and from the urban canopy in Tianjin
2016
Wang, Jiao | Zhou, Ming | Liu, Bao-shuang | Wu, Jian-hui | Peng, Xing | Zhang, Yu-fen | Han, Su-qin | Feng, Yin-chang | Zhu, Tan
To investigate the size distributions of chemical compositions and sources of particulate matter (PM) at ground level and from the urban canopy, a study was conducted on a 255 m meteorological tower in Tianjin from December 2013 to January 2014. Thirteen sets of 8 size-segregated particles were collected with cascade impactor at 10 m and 220 m. Twelve components of particles, including water-soluble inorganic ions and carbonaceous species, were analyzed and used to apportion the sources of PM with positive matrix factorization. Our results indicated that the concentrations, size distributions of chemical compositions and sources of PM at the urban canopy were affected by regional transport due to a stable layer approximately 200 m and higher wind speed at 220 m. The concentrations of PM, Cl− and elemental carbon (EC) in fine particles at 10 m were higher than that at 220 m, while the reverse was true for NO3− and SO42−. The concentrations of Na+, Ca2+, Mg2+, Cl− and EC in coarse particles at 10 m were higher than that at 220 m. The size distributions of major primary species, such as Cl−, Na+, Ca2+, Mg2+ and EC, were similar at two different heights, indicating that there were common and dominant sources. The peaks of SO42−, NH4+, NO3− and organic carbon (OC), which were partly secondary generated species, shifted slightly to the smaller particles at 220 m, indicating that there was a different formation mechanism. Industrial pollution and coal combustion, re-suspended dust and marine salt, traffic emissions and transport, and secondary inorganic aerosols were the major sources of PM at both heights. With the increase in vertical height, the influence of traffic emissions, re-suspended dust and biomass burning on PM weakened, but the characteristics of regional transport from Hebei Province and Beijing gradually become obvious.
Afficher plus [+] Moins [-]Coupling dynamics and chemistry in the air pollution modelling of street canyons: A review
2016
Zhong, Jian | Cai, Xiao-Ming | Bloss, William James
Air pollutants emitted from vehicles in street canyons may be reactive, undergoing mixing and chemical processing before escaping into the overlying atmosphere. The deterioration of air quality in street canyons occurs due to combined effects of proximate emission sources, dynamical processes (reduced dispersion) and chemical processes (evolution of reactive primary and formation of secondary pollutants). The coupling between dynamics and chemistry plays a major role in determining street canyon air quality, and numerical model approaches to represent this coupling are reviewed in this article. Dynamical processes can be represented by Computational Fluid Dynamics (CFD) techniques. The choice of CFD approach (mainly the Reynolds-Averaged Navier-Stokes (RANS) and Large-Eddy Simulation (LES) models) depends on the computational cost, the accuracy required and hence the application. Simplified parameterisations of the overall integrated effect of dynamics in street canyons provide capability to handle relatively complex chemistry in practical applications. Chemical processes are represented by a chemical mechanism, which describes mathematically the chemical removal and formation of primary and secondary species. Coupling between these aspects needs to accommodate transport, dispersion and chemical reactions for reactive pollutants, especially fast chemical reactions with time scales comparable to or shorter than those of typical turbulent eddies inside the street canyon. Different approaches to dynamical and chemical coupling have varying strengths, costs and levels of accuracy, which must be considered in their use for provision of reference information concerning urban canopy air pollution to stakeholders considering traffic and urban planning policies.
Afficher plus [+] Moins [-]