Affiner votre recherche
Résultats 1-10 de 222
Characteristics and compound-specific carbon isotope compositions of sedimentary lipids in high arsenic aquifers in the Hetao basin, Inner Mongolia Texte intégral
2018
Mao, Ruoyu | Guo, Huaming | Xiu, Wei | Yang, Yuance | Huang, Xianyu | Zhou, Yinzhu | Li, Xiaomeng | Jin, Jianyi
Organic matter, as an electron donor, plays a vital role in As mobilization mediated by microorganisms during reductive dissolution of Fe/Mn oxides in shallow aquifers. However, the specific types and sources of organic matter involved in biogeochemical processes accelerating As mobilization are still controversial. Both sediment and groundwater samples were collected at different depths from aquifers of the Hetao Basin, a typical inland basin hosting high As groundwater. Sedimentary lipids and their compound-specific carbon isotope ratios were analyzed to evaluate characteristics and sources of organic matter. Results show that sedimentary As were well correlated with Fe and Mn oxides, suggesting that As exist as Fe/Mn oxide bound forms. Groundwater As far exceeded the drinking water guide value of 10 μg/L. Moreover, As concentrations in shallow groundwater were relatively higher. Lipids in clay were mainly originated from terrestrial higher plants, while that in fine sand samples were derived from terrestrial higher plants, microorganism and petroleum. Shallow fine sand samples were also characterized by evident in-situ biodegradation. Compound-specific carbon isotope compositions of sedimentary lipids showed that short-chain n-alkanes and n-alkanoic acids had more positive δ13C values compared to long-chain compounds, especially in shallow fine sand samples. δ13CTOC were also low in shallow fine sand samples. These results jointly indicate that these lipids in shallow fine sand samples acted as carbon source for indigenous microorganism and the short-chain components were particularly more vulnerable to biodegradation, which may contribute to high As concentrations in shallow groundwater. The new findings provide the first evidence that short chain length n-alkyl compounds afforded a source of potential electron donors for microbially mediated As mobilization process in the shallow aquifers.
Afficher plus [+] Moins [-]CO2 reforming of CH4 on Ni-Al-Ox catalyst using pure and coal gas feeds: Synergetic effect of CoO and MgO in mitigating carbon deposition Texte intégral
2018
Alabi, Wahab. O.
Mg-Al-Ox supported monometallic (Ni) and bimetallic (Ni-Co) catalysts with different compositions of Mg and Al were investigated for CO₂ reforming of CH₄, using both coal and pure gas feeds, to limit the emission of these environmental pollutant gases into the atmosphere. Results showed that all the catalysts were active for dry reforming reaction using both feeds. Reactants conversion, stoichiometric product selectivity, and resistance to carbon deposition of catalysts remarkably improved when the Mg/Al ratio was greater than 1. Characterization results revealed changes in the bulk structure, textural and surface properties as the Mg/Al ratio and composition of catalysts changed. Improved active metal reduction, metal-support and metal-metal interaction (in the bimetallic) were also noted in the catalysts with Mg/Al ratio greater than 1. With respect to feed composition, less carbon deposition was recorded in the corresponding catalysts using coal gas compared to the pure gas. Ni-Co interaction and their interaction with MgO facilitated better basicity, increased metal dispersion and smaller particle size in Ni-Co-Mg₁.₇-Al₁-Ox, which showed best catalytic performance with no carbon deposition in both feeds. These interactions and properties stabilized the Ni site, which made the Ni-Co-Mg₁.₇-Al₁-Ox, catalyst resistant to sintering and carbon deposition.
Afficher plus [+] Moins [-]Simultaneous adsorption and oxidative degradation of Bisphenol A by zero-valent iron/iron carbide nanoparticles encapsulated in N-doped carbon matrix Texte intégral
2018
Jin, Qingqing | Zhang, Sai | Wen, Tao | Wang, Jian | Gu, Pengcheng | Zhao, Guixia | Wang, Xiangxue | Chen, Zhongshan | Hayat, Tasawar | Wang, Xiangke
The increased release and accumulation of Bisphenol A (BPA) in contaminated wastewater has resulted in the world wide concerns because of its potential negative effects on human health and aquatic ecosystems. Starting with metal-organic frameworks, we present a simple method to synthesize magnetic porous microcubes (N-doped Fe⁰/Fe₃C@C) with graphitized shell and highly dispersed active kernel via the pyrolysis process under N₂ atmosphere. Batch adsorption experimental results showed that N-doped Fe⁰/Fe₃C@C had high adsorption capacity for BPA (∼138 mg g⁻¹ at pH = 7 and 298 K). Degradation of BPA adsorbed on N-doped Fe⁰/Fe₃C@C was further investigated as a function of BPA concentration, persulfate amount, temperature and solution pH. It was found that potassium peroxodisulfate could be activated by N-doped Fe⁰/Fe₃C@C, and a large number of free radicals were generated which was crucial for the degradation of BPA. The concentration of BPA was barely changed in the individual persulfate system. BPA (10 mg L⁻¹) was almost completely degraded within 60 min in the presence of N-doped Fe⁰/Fe₃C@C (∼0.2 g L⁻¹). When the BPA content increased to 25 mg L⁻¹, the removal efficiency of BPA achieved to 98.4% after 150 min. From the XRD, Raman, and XPS analysis, the main adsorption mechanism of BPA was π-π interactions between the π orbital on the carbon basal planes and the electronic density in the BPA aromatic rings. While the superior degradation was attributed to the radical generation and evolution in phenol oxidation. This work not only proved the potential application of N-doped Fe⁰/Fe₃C@C in the adsorption and degradation of BPA, but also opened the new possibilities to eliminate organic pollutants using this kind of magnetic materials in organic pollutants’ cleanup.
Afficher plus [+] Moins [-]Vertical variation of PM2.5 mass and chemical composition, particle size distribution, NO2, and BTEX at a high rise building Texte intégral
2018
Zauli Sajani, Stefano | Marchesi, Stefano | Trentini, Arianna | Bacco, Dimitri | Zigola, Claudia | Rovelli, Sabrina | Ricciardelli, Isabella | Maccone, Claudio | Lauriola, Paolo | Cavallo, Domenico Maria | Poluzzi, Vanes | Cattaneo, Andrea | Harrison, Roy M.
Substantial efforts have been made in recent years to investigate the horizontal variability of air pollutants at regional and urban scales and epidemiological studies have taken advantage of resulting improvements in exposure assessment. On the contrary, only a few studies have investigated the vertical variability and their results are not consistent. In this study, a field experiment has been conducted to evaluate the variation of concentrations of different particle metrics and gaseous pollutants on the basis of floor height at a high rise building. Two 15-day monitoring campaigns were conducted in the urban area of Bologna, Northern Italy, one of the most polluted areas in Europe. Measurements sites were operated simultaneously at 2, 15, 26, 44 and 65 m a.g.l. Several particulate matter metrics including PM₂.₅ mass and chemical composition, particle number concentration and size distribution were measured. Time integrated measurement of NO₂ and BTEX were also included in the monitoring campaigns. Measurements showed relevant vertical gradients for most traffic related pollutants. A monotonic gradient of PM₂.₅ was found with ground-to-top differences of 4% during the warm period and 11% during the cold period. Larger gradients were found for UFP (∼30% during both seasons) with a substantial loss of particles from ground to top in the sub-50 nm size range. The largest drops in concentrations for chemical components were found for Elemental Carbon (−27%), iron (−11%) and tin (−36%) during winter. The ground-to-top decline of concentrations for NO₂ and benzene during winter was equal to 74% and 35%, respectively. In conclusion, our findings emphasize the need to include vertical variations of urban air pollutants when evaluating population exposure and associated health effects, especially in relation to some traffic related pollutants and particle metrics.
Afficher plus [+] Moins [-]VOC emissions and carbon balance of two bioenergy plantations in response to nitrogen fertilization: A comparison of Miscanthus and Salix Texte intégral
2018
Hu, Bin | Jarosch, Ann-Mareike | Gauder, Martin | Graeff-Hönninger, Simone | Schnitzler, Jörg-Peter | Grote, Rüdiger | Rennenberg, H. (Heinz) | Kreuzwieser, Jürgen
Energy crops are an important renewable source for energy production in future. To ensure high yields of crops, N fertilization is a common practice. However, knowledge on environmental impacts of bioenergy plantations, particularly in systems involving trees, and the effects of N fertilization is scarce. We studied the emission of volatile organic compounds (VOC), which negatively affect the environment by contributing to tropospheric ozone and aerosols formation, from Miscanthus and willow plantations. Particularly, we aimed at quantifying the effect of N fertilization on VOC emission. For this purpose, we determined plant traits, photosynthetic gas exchange and VOC emission rates of the two systems as affected by N fertilization (0 and 80 kg ha−1 yr−1). Additionally, we used a modelling approach to simulate (i) the annual VOC emission rates as well as (ii) the OH. reactivity resulting from individual VOC emitted. Total VOC emissions from Salix was 1.5- and 2.5-fold higher compared to Miscanthus in non-fertilized and fertilized plantations, respectively. Isoprene was the dominating VOC in Salix (80–130 μg g−1 DW h−1), whereas it was negligible in Miscanthus. We identified twenty-eight VOC compounds, which were released by Miscanthus with the green leaf volatile hexanal as well as dimethyl benzene, dihydrofuranone, phenol, and decanal as the dominant volatiles. The pattern of VOC released from this species clearly differed to the pattern emitted by Salix. OH. reactivity from VOC released by Salix was ca. 8-times higher than that of Miscanthus. N fertilization enhanced stand level VOC emissions, mainly by promoting the leaf area index and only marginally by enhancing the basal emission capacity of leaves. Considering the higher productivity of fertilized Miscanthus compared to Salix together with the considerably lower OH. reactivity per weight unit of biomass produced, qualified the C4-perennial grass Miscanthus as a superior source of future bioenergy production.
Afficher plus [+] Moins [-]Analysis of glyphosate degradation in a soil microcosm Texte intégral
2018
la Cecilia, Daniele | Maggi, Federico
Glyphosate (GLP) herbicide leaching into soil can undergo abiotic degradation and two enzymatic oxidative or hydrolytic reactions in both aerobic and anaerobic conditions; biotic oxidation produces aminomethylphosphonic acid (AMPA). Both GLP and AMPA are phytotoxic. A comprehensive GLP degradation reaction network was developed from the literature to account for the above pathways, and fifteen experimental data sets were used to determine the corresponding Michaelis-Menten-Monod (MMM) kinetic parameters. Various sensitivity analyses were designed to assess GLP and AMPA degradation potential against O2 (aq) and carbon (C) availability, pH, and birnessite mineral content, and showed that bacteria oxidized or hydrolyzed up to 98% of GLP and only 9% of AMPA. Lack of a C source limited the GLP cometabolic hydrolytic pathways, which produces non-toxic byproducts and promotes AMPA biodegradation. Low bacterial activity in O2 (aq)-limited conditions or non-neutral pH resulted in GLP accumulation. Birnessite mineral catalyzed fast GLP and AMPA chemodegradation reaching alone efficiencies of 79% and 88%, respectively, regardless of the other variables and produced non-toxic byproducts. Overall, O2 (aq) and birnessite availability played the major roles in determining the partitioning of GLP and its byproducts mass fluxes across the reaction network, while birnessite, C availability, and pH affected GLP and AMPA biodegradation effectiveness.
Afficher plus [+] Moins [-]Characteristics of perfluoroalkyl acids in atmospheric PM10 from the coastal cities of the Bohai and Yellow Seas, Northern China Texte intégral
2018
Yu, ShuangYu | Liu, Weijian | Xu, YunSong | Zhao, YongZhi | Wang, Pei | Wang, Xin | Li, Xinyue | Cai, ChuanYang | Liu, Yang | Xiong, GuanNan | Tao, Shu | Liu, Wenxin
The concentration distributions, compositional profiles and seasonal variations of 17 perfluoroalkyl acids (PFAAs) in PM₁₀ (particles with aerodynamic diameters < 10 μm) were determined in seven coastal cities of the Bohai and Yellow Seas. The detection rates of perfluorooctanoic acid (PFOA) and short-chain components (perfluoroalkyl carboxylic acids (PFCAs) with ≤7 carbon atoms and perfluoroalkane sulfonic acids (PFSAs) with ≤5 carbon atoms) were much higher than those of other long-chain PFAA species. The annual average concentration of total PFAAs in PM₁₀ ranged from 23.6 pg/m³ to 94.5 pg/m³ for the sampling cities. The monthly mean concentrations of PFAAs in PM₁₀ in some sampling cities reached a peak value in winter, while no significant seasonal differences presented in other cities. High concentrations of PFAAs in the northern cities generally occurred during the local heating period (from November to March). Generally, the dominant components of PFAAs were PFOA and perfluorobutyric acid (PFBA). Some significantly positive correlations (p < 0.01) between the 10 dominant components were revealed in the sampling cities, which implied similar sources and fate behaviors. Based on the simulated 72-hr backward trajectory tracking of air masses, the clustering results demonstrated the sampling cities were affected mainly by the atmospheric transport in sequence from the northwest, the southwest and the open seas, and many transport trajectories of air masses passed by the local fluorine chemical manufacturers in Liaoning, Shandong, Jiangsu, and Hubei Provinces. The estimated average daily intake (ADI) corresponding to the residents in different age groups indicated insignificant contributions to PFOA and perfluorooctane sulfonate (PFOS) exposures by inhalation of PM₁₀ compared to ingestion by daily diet, while the higher ADI of PFOA than the reported levels for adults should be a concern. The calculated hazard ratios (HR) exhibited low noncancer risks by inhalation exposure to PFOA and PFOS in PM₁₀.
Afficher plus [+] Moins [-]Uptake and translocation of 14C-Carbamazepine in soil-plant systems Texte intégral
2018
Li, Ming | Ding, Tengda | Wang, Haiyan | Wang, Wei | Li, Juying | Ye, Qingfu
Carbamazepine (CBZ) is an antiepileptic drug that is frequently detected in wastewater treatment plants, soil and plants after irrigation with treated wastewater or application of biosolids. However, little information is available on the fate and uptake of CBZ in edible vegetables. In this study, radioautographic visualization of the ¹⁴C distribution revealed that ¹⁴C-CBZ can be taken up by all three ready-to-eat vegetables. Furthermore, a mass-balance study was conducted to evaluate the dynamic processes of the uptake and translocation of CBZ by ¹⁴C labeling. ¹⁴C-CBZ was gradually taken up with the growth of vegetables, with maximum uptake ratios of 2.19 ± 0.15, 2.86 ± 0.24 and 0.25 ± 0.05% of applied ¹⁴C in celery, carrot and pak choi, respectively. The bioconcentration factors (BCFs) based on ¹⁴C measurements ranged from 7.6 to 26.1 for celery, 3.6–12.9 for carrot, and 4.4–44 for pak choi. ¹⁴C-CBZ was easily translocated from the roots to the leaves and/or stems. The amendment of biosolids had a significant inhibitory effect on the uptake and translocation of ¹⁴C-CBZ from soil.
Afficher plus [+] Moins [-]Mechanism of matrix-bound phosphine production in response to atmospheric elevated CO2 in paddy soils Texte intégral
2018
An, Shaorong | Niu, Xiaojun | Chen, Weiyi | Sheng, Hong | Lai, Senchao | Yang, Zhiquan | Gu, Xiaohong | Zhou, Shaoqi
To explore the effect of elevated CO₂ concentrations ([CO₂]) on phosphine formation in paddy fields, the matrix-bound phosphine (MBP) content, different phosphorus fractions and various carbon forms in soil samples from rice cultivation under varying CO₂ concentrations of 400 ppm, 550 ppm and 700 ppm by indoor simulation experiment were determined. This study showed that MBP concentration did not increase significantly with elevated [CO₂] over four-week cultivation periods of rice seedlings, regardless of soil layers. MBP had a significant positive correlation with total phosphorus (TP) and inorganic phosphorus (IP), and multiple stepwise linear regression analysis further indicated that MBP preservation in neutral paddy soils with depths of 0–20 cm may have been due to conversion from FeP and CaP. Based on redundancy analysis and forward selection analysis, speculated that the formation of MBP in the neutral paddy soils as the response to atmospheric elevated [CO₂] was due to two processes: (i) FeP transformation affected by the changes of soil respiration (SCO₂) and TOC was the main precursor for the production of MBP; and (ii) CaP transformation resulting from variation in HCO₃⁻ was the secondary MBP source. The complex combination of these two processes is simultaneously controlled by SCO₂. In a word, the soil environment in the condition of elevated [CO₂] was in favor of MBP storage in neutral paddy soils. The results of our study imply that atmospheric CO₂ participates in and has a certain impact on the global biogeochemical cycle of phosphorus.
Afficher plus [+] Moins [-]Nano-rod Ca-decorated sludge derived carbon for removal of phosphorus Texte intégral
2018
Kong, Lingjun | Han, Meina | Shih, Kaimin | Su, Minhua | Diao, Zenghui | Long, Jianyou | Chen, Diyun | Hou, Li'an | Peng, Yan
Recovering phosphorus (P) from waste streams takes the unique advantage in simultaneously addressing the crisis of eutrophication and the shortage of P resource. A novel calcium decorated sludge carbon (Ca-SC) was developed from dyeing industry wastewater treatment sludge by decorating calcium (Ca) to effectively adsorb phosphorus from solution. The X-ray diffraction (XRD) and Fourier transform infrared (FTIR) techniques were used to characterize the Ca-SCs, followed by isotherm and kinetic sorption experiments. A preferred design with CaCO₃ to sludge mass ratio of 1:2 was found to have a sorption capacity of 116.82 mg/g for phosphorus. This work reveals the crucial role of well-dispersed nano-rod calcium on the Ca-SC surface for the sorption of phosphorus. Moreover, the decoration of nano-rod calcium was found to further promote the uptake of phosphorus through the formation of hydroxylapatite (Ca₅(PO₄)₃(OH)). Thus, the development of decorated Ca-SC for sorption of phosphorus is very important in solving the P pollution and resource loss.
Afficher plus [+] Moins [-]