Affiner votre recherche
Résultats 1-10 de 355
Carbon Monoxide Prediction in the Atmosphere of Tehran Using Developed Support Vector Machine
2020
Akbarzadeh, A. | Vesali Naseh, M. R. | NodeFarahani, M.
Air quality prediction is highly important in view of the health impacts caused by exposure to air pollutants in urban air. This work has presented a model based on support vector machine (SVM) technique to predict daily average carbon monoxide (CO) concentrations in the atmosphere of Tehran. Two types of SVM regression models, i.e. -SVM and -SVM techniques, were used to predict average daily CO concentration as a function of 12 input variables. Then, forward selection (FS) technique was applied to reduce the number of input variables. After converting 12 input variables to 7 using the FS, they were fed to SVM models (FS-(-SVM) and FS-(-SVM)). Finally, a comparison among SVM models operation and previously developed techniques, i.e. classical regression model and artificial intelligent methods such as ANN and adaptive neuro-fuzzy inference system (ANFIS) was carried out. Determination of coefficient (R2) and mean absolute error (MAE) for -SVM (-SVM) were 0.87 (0.40) and 0.87 (0.41), respectively, while they were 0.90 (0.39) and 0.91 (0.35) for ANN and ANFIS, respectively. Results of developed SVM models indicated that both FS-(-SVM) and FS-(-SVM) regression techniques were superior. Furthermore, it was founded that the performance of FS-(-SVM) and FS-(-SVM) models were generally a bit better than the best FS-ANFIS and FS-ANN solutions for short term forecasting of CO concentrations.
Afficher plus [+] Moins [-]Brick Kilns Air Pollution and its Impact on the Peshawar City
2022
Hussain, Amjad | Khan, Naseer | Ullah, Munzer | Imran, Muhammad | Ibrahim, Muhammad | Hussain, Javid | Ullah, Hussain | Ullah, Irfan | Ahmad, Ikram | Khan, Muhammad | Ali, Meher | Attique, Faisal
In recent times, the brick kiln contributes to air pollution is one of the most emerging issues worldwide. In this research work, the Peshawar city, ambient air quality was measured, using a fixed air monitoring station to evaluate the impact of gaseous emission from brick kilns on ground level. In this study, the portable gas analyzer (PG-250) was used to quantify brick-based emitting carbon monoxide (CO), sulfur dioxide (SO2) and nitrogen oxide (NOx) from 3 brick kilns in the city of Peshawar. It was noticed that the average concentration of SO2 and NOx exceeds the National Environmental Quality Standards (NEQS) of Pakistan specifically, in terms of air quality. The brick kilns in District Peshawar have shown negative effects on the environment. It is necessary to take various measures to monitor the brick kiln embosom regularly before it becomes a significant risk for individuals. In conclusion, the impact of air pollution on physical activity and sedentary behavior at a specific time may be different.
Afficher plus [+] Moins [-]La mesure de la pollution atmospherique. L' experience francaise.
1994
Herz O. | Stroebel R. | Sommer M.
La pollution atmospherique en Republique d' Estonie: un grand defi a relever.
1994
Jacquignon P.C.
Inequalities in occupational exposures among people using popular commute modes
2022
Patra, Arpan | Phuleria, Harish C.
Several recent studies have looked into the differences in air qualities inside popular commute modes. The impact of daily commuting patterns and work-related trips on inhalation doses, however, are not investigated. The purpose of this study is to quantify the variation in air pollutants within popular commute modes in Mumbai, India, and to estimate the variation in exposure as a result of occupational or work-related trips across different sub-groups. Real-time pollutants, both gaseous and particulate matters (PM), were measured on a pre-defined route during rush and non-rush hours on buses, cars, auto-rickshaws, sub-urban trains, and motorbikes through several trips (N = 98). Household surveys were conducted to estimate the exposures of different occupational subgroups (cab-driver, auto-rickshaw drivers, delivery persons) and people commuting to their offices daily. Participants (N = 800) from various socioeconomic backgrounds in the city were asked about their job categories, work-activity patterns, and work-related commute trips. Mass concentrations of particles in different size ranges (PM₁, PM₂.₅, and PM₁₀) were substantially higher (p < 0.05) inside auto-rickshaws (44.6 μg/m³, 84.7 μg/m³, and 138.3 μg/m³) compared to other modes. Inside cars, gaseous pollutants such as carbon monoxide (CO) and total volatile organic compounds (TVOC) were significantly higher (p < 0.05). Although both gaseous and particulate concentrations were lower (p < 0.05) inside buses, bus-commuters were found to be highly exposed to the pollutants due to the extended trip time (∼1.2 times longer than other modes) and driving conditions. Office commuters inhale a large fraction of their daily doses (25–30%) during their work-related travel. Occupational sub-groups, on the other hand, inhale ∼90% of the pollutants during their work. In a day, an auto-rickshaw driver inhales 10–15% more (p < 0.05) pollutants than cab driver or delivery personnel. Therefore, this study highlights the inequalities in occupational exposure as a combined effect of in-cabin air qualities and commute patterns due to occupational obligations.
Afficher plus [+] Moins [-]Association of ambient air pollution exposure and its variability with subjective sleep quality in China: A multilevel modeling analysis
2022
Wang, Lingli | Zhang, Jingxuan | Wei, Jing | Zong, Jingru | Lü, Chunyu | Du, Yajie | Wang, Qing
Growing epidemiological evidence has shown that exposure to ambient air pollution contributes to poor sleep quality. However, whether variability in air pollution exposure affects sleep quality remains unclear. Based on a large sample in China, this study linked individual air pollutant exposure levels and temporal variability with subjective sleep quality. Town-level data on daily air pollution concentration for 30 days prior to the survey date were collected, and the monthly mean value, standard deviations, number of heavily polluted days, and trajectory for six common pollutants were calculated to measure air pollution exposure and its variations. Sleep quality was subjectively assessed using the Pittsburgh Sleep Quality Index (PSQI), and a PSQI score above 5 indicated overall poor sleep quality. Multilevel and negative control models were used. Both air pollution exposure and variability contributed to poor sleep quality. A one-point increase in the one-month mean concentration of particulate matter with aerodynamic diameters of ≤2.5 μm (PM₂.₅) and ≤10 μm (PM₁₀) led to 0.4% (95% confidence interval (CI): 1.002–1.006) and 0.3% (95% CI: 1.001–1.004) increases in the likelihoods of overall poor sleep quality (PSQI score >5), respectively; the odds ratios of a heavy pollution day with PM₂.₅ and PM₁₀ were 2.2% (95% CI: 1.012–1.032) and 2.2% (95% CI: 1.012–1.032), respectively. Although the mean concentrations of nitrogen dioxide, sulfur dioxide, and carbon monoxide met the national standard, they contributed to the likelihood of overall poor sleep quality (PSQI score >5). A trajectory of air pollution exposure with maximum variability was associated with a higher likelihood of overall poor sleep quality (PSQI score >5). Subjective measures of sleep latency, duration, and efficiency (derived from PSQI) were affected in most cases. Thus, sleep health improvements should account for air pollution exposure and its variations in China under relatively high air pollution levels.
Afficher plus [+] Moins [-]Association of household air pollution with cellular and humoral immune responses among women in rural Bangladesh
2022
Raqib, Rubhana | Akhtar, Evana | Sultana, Tajnin | Ahmed, Shyfuddin | Chowdhury, Muhammad Ashique Haider | Shahriar, Mohammad Hasan | Kader, Shirmin Bintay | Eunus, Mahbbul | Haq, Md Ahsanul | Sarwar, Golam | Islam, Tariqul | Alam, Dewan Shamsul | Parvez, Faruque | Begum, Bilkis A. | Ahsan, Habibul | Yunus, Mohammed
Household air pollution (HAP) arising from combustion of biomass fuel (BMF) is a leading cause of morbidity and mortality in low-income countries. Air pollution may stimulate pro-inflammatory responses by activating diverse immune cells and cyto/chemokine expression, thereby contributing to diseases. We aimed to study cellular immune responses among women chronically exposed to HAP through use of BMF for domestic cooking. Among 200 healthy, non-smoking women in rural Bangladesh, we assessed exposure to HAP by measuring particulate matter 2.5 (PM₂.₅), black carbon (BC) and carbon monoxide (CO), through use of personal monitors RTI MicroPEM™ and Lascar CO logger respectively, for 48 h. Blood samples were collected following HAP exposure assessment and were analyzed for immunoprofiling by flow cytometry, plasma IgE by immunoassay analyzer and cyto/chemokine response from monocyte-derived-macrophages (MDM) and -dendritic cells (MDDC) by multiplex immunoassay. In multivariate linear regression model, a doubling of PM₂.₅ was associated with small increments in immature/early B cells (CD19⁺CD38⁺) and plasmablasts (CD19⁺CD38⁺CD27⁺). In contrast, a doubling of CO was associated with 1.20% reduction in CD19⁺ B lymphocytes (95% confidence interval (CI) = -2.36, −0.01). A doubling of PM₂.₅ and BC each was associated with 3.12% (95%CI = −5.85, −0.38) and 4.07% (95%CI = −7.96, −0.17) decrements in memory B cells (CD19⁺CD27⁺), respectively. Exposure to CO was associated with increased plasma IgE levels (beta(β) = 240.4, 95%CI = 3.06, 477.8). PM₂.₅ and CO exposure was associated with increased MDM production of CXCL10 (β = 12287, 95%CI = 1038, 23536) and CCL5 (β = 835.7, 95%CI = 95.5, 1576), respectively. Conversely, BC exposure was associated with reduction in MDDC-produced CCL5 (β = −3583, 95%CI = −6358, −807.8) and TNF-α (β = −15521, 95%CI = −28968, −2074). Our findings suggest that chronic HAP exposure through BMF use adversely affects proportions of B lymphocytes, particularly memory B cells, plasma IgE levels and functions of antigen presenting cells in rural women.
Afficher plus [+] Moins [-]Simultaneous observation of atmospheric peroxyacetyl nitrate and ozone in the megacity of Shanghai, China: Regional transport and thermal decomposition
2021
Zhang, Gen | Jing, Shengao | Xu, Wanyun | Gao, Yaqin | Yan, Chao | Liang, Linlin | Huang, Cheng | Wang, Hongli
Atmospheric peroxyacetyl nitrate (PAN) and ozone (O₃) are two typical indicators for photochemical pollution that have adverse effects on the ecosystem and human health. Observation networks for these pollutants have been expanding in developed regions of China, such as North China Plain (NCP) and Pearl River Delta (PRD), but are sparse in Yangtze River Delta (YRD), meaning their concentration and influencing factors remain poorly understood. Here, we performed a one-year measurement of atmospheric PAN, O₃, particulate matter with aerodynamic diameter smaller than 2.5 μm (PM₂.₅), nitrogen oxides (NOₓ), carbon monoxide (CO), and meteorological parameters from December 2016 to November 2017 in Shanghai. Overall, high hourly maximum PAN and O₃ were found to be 7.0 and 185 ppbv in summer, 6.2 and 146 ppbv in autumn, 5.8 and 137 ppbv in spring, and 6.0 and 76.7 ppbv in winter, respectively. Continental air masses probably carried atmospheric pollutants to the sampling site, while frequent maritime winds brought in less polluted air masses. Furthermore, positive correlations (R: 0.72–0.85) between PAN and O₃ were found in summer, indicating a predominant role of photochemistry in their formation. Unlike in summer, weak or no correlations between PAN and O₃ were featured during the other seasons, especially in winter, due to their different loss pathways. Unexpectedly, positive correlations between PAN and PM₂.₅ were found in all seasons. During summer, moderate correlation could be attributed to the strong photochemistry acting as a common driver in the formation of secondary aerosols and PAN. During winter, high PM₂.₅ might promote PAN production through HONO production, hence resulting in a good positive correlation. Additionally, the loss of PAN by thermal decomposition (TPAN) only accounted for a small fraction (ca. 1%) of the total (PAN + TPAN) during a typical winter episode, while it significantly reached 14.4 ppbv (71.1% of the total) in summer.
Afficher plus [+] Moins [-]Hemin-decreased cadmium uptake in pak choi (Brassica chinensis L.) seedlings is heme oxygenase-1 dependent and relies on its by-products ferrous iron and carbon monoxide
2021
Su, Nana | Niu, Mengyang | Liu, Ze | Wang, Lu | Zhu, Zhengbo | Zou, Jianwen | Chen, Yahua | Cui, Jin
Cadmium (Cd) is a major pollutant in farmland, which not only greatly restricts crop production, but also brings a serious threat to human health through entering the food chain. Our previous study showed that hemin treatment could reduce the accumulation of Cd in pak choi seedlings. However, the underlying mechanism remains unclear. In this study, we used non-invasive micro-test technology (NMT) to detect the real-time Cd²⁺ flux from pak choi roots and demonstrated that hemin treatment decreased Cd uptake rather than its translocation within plants. Moreover, through comparing the responses of different chemical treatments in pak choi seedlings and Arabidopsis wild-type and heme oxygenase-1 (HO-1) mutant, we provided evidence that hemin-decreased Cd uptake was HO-1 dependent. Furthermore, analyses of hemin degradation products suggested that the hemin-derived suppression of Cd uptake suppression was probably relying on its degradation by-products, ferrous iron (Fe²⁺) and carbon monoxide (CO), via repressing the expression of a Fe²⁺/Cd²⁺ transporter BcIRT1 in pak choi roots.
Afficher plus [+] Moins [-]Factors affecting the exposure to physicochemical and microbiological pollutants in vehicle cabins while commuting in Lisbon
2021
Buitrago, N.D. | Savdie, J. | Almeida, S.M. | Verde, S Cabo
Commuters are exposed to a variety of physicochemical and microbiological pollutants that can lead to adverse health effects. This study aims to evaluate the indoor air quality (IAQ) in cars, buses and trains in Lisbon, to estimate inhaled doses while commuting and to evaluate the impacts of cleaning and ventilation on the IAQ. Particulate matter with diameter lower than 1, 2.5 and 10 μm (PM₁, PM₂.₅ and PM₁₀), black carbon (BC), carbon monoxide (CO), carbon dioxide (CO₂) volatile organic compounds (VOCs), formaldehyde (CH₂O) and total airborne bacteria and fungi were measured and bacterial isolates were identified. Results showed that the type of ventilation is the main factor affecting the IAQ in vehicle cabins. Under the fan off condition, the concentration of BC was lower, but the concentration of gases such as CO₂, CO and VOC tended to accumulate rapidly. When the ventilation was used, the coarse particles were filtered originating the decrease of indoor concentrations. Commuters travelling in trains received the lowest dose for all chemical pollutants, except VOC, mainly because railways are further away from the direct vehicular emissions. Commuters travelling in cars without ventilation received the highest inhaled dose for almost all pollutants despite having the lowest travel duration. Airborne microbiota was highly affected by the occupancy of the vehicles and therefore, the fungi and bacterial loads were higher in trains and buses. Most of the isolated species were human associated bacteria and some of the most abundant species have been linked to respiratory tract infections.
Afficher plus [+] Moins [-]