Affiner votre recherche
Résultats 1-10 de 553
Impact of biosurfactant and iron nanoparticles on biodegradation of polyaromatic hydrocarbons (PAHs) Texte intégral
2022
Parthipan, Punniyakotti | Cheng, Liang | Dhandapani, Perumal | Elumalai, Punniyakotti | Huang, Mingzhi | Rajasekar, Aruliah
Polycyclic aromatic hydrocarbons (PAHs) are hazardous toxic contaminants and considered as primary pollutants due to their persistent nature and most of them are carcinogenic and mutagenic. The key challenge in PAHs degradation is their hydrophobic nature, which makes them one of the most complex materials and inaccessible by a broad range of microorganisms. This bioavailability can be increased by using a biosurfactant. In the present study mixed PAHs were degraded using the biosurfactant producing bacterial strains. In addition, iron nanoparticles were synthesized and the impact of iron nanoparticles on the growth of the mixed bacterial strains (Pseudomonas stutzeri NA3 and Acinetobacter baumannii MN3) was optimized. The mixed PAHs (anthracene, pyrene, and benzo(a)pyrene) degradation was enhanced by addition of biosurfactant (produced by Bacillus subtilis A1) and iron nanoparticles, resulting in 85% of degradation efficiency. The addition of the biosurfactant increased the bioavailability of the PAHs in the aqueous environment, which might help bacterial cells for the initial settlement and development. The addition of iron nanoparticles increased both bacterial biomass and PAHs adsorption over their surface. These overall interactions assisted in the utilization of PAHs by the mixed bacterial consortia. This study illustrates that this integrated approach can be elaborated for the removal of the complex PAHs pollutants from soil and aqueous environments.
Afficher plus [+] Moins [-]Size-fractionated PM-bound PAHs in urban and rural atmospheres of northern Thailand for respiratory health risk assessment Texte intégral
2022
Insian, Wittawat | Yabueng, Nuttipon | Wiriya, Wan | Chantara, Somporn
Size-fractionated particulate matters (SPMs) in a range of 9.0 to 0.43 μm, classified based on aerodynamic diameter (dₐₑ) as fine PMs (0.43 μm ≤ dₐₑ < 2.1 μm) and coarse PMs (2.1 μm ≤ dₐₑ < 9.0 μm) were collected by cascade impactors (7 fractions) during smoke haze (SH) and non-smoke haze (NSH) seasons in urban and rural areas of Chiang Mai, Thailand. Their polycyclic aromatic hydrocarbons (PAHs) compositions were determined for respiratory health risk assessment. During SH episode, concentrations of SPMs and PAHs in the rural area were approximately two times higher than in the urban area and about 62–68% of the SPMs were fine particles. Conversely, during NSH season the concentrations in the urban area were higher due to traffic emission. The finest particle sizes (0.65–0.43 μm) contained the highest PAHs concentrations among the other PM sizes. Benzo[b]fluoranthene was a main PAH component found during SH season suggesting biomass burning is a major pollutant source. High molecular weight (5–6 rings) PAHs with high carcinogenicity were likely to concentrate in fine particles. Distribution patterns of SPMs and PAHs during SH season were bimodal with the highest peak at a fine size range (0.65–0.43 μm) and a small peak at a coarse size range (5.8–4.7 μm). Respiratory health risk was estimated based on toxicity equivalent concentrations of PAHs bound-SPMs and inhalation cancer risk (ICR). Relatively high ICR values (1.14 × 10⁻⁴ (rural) and 6.80 × 10⁻⁵ (urban)) were found during SH season in both areas, in which fine particles played an important role. It revealed that high concentration of fine particles in ambient air is related to high respiratory health risk due to high content of carcinogenic substances.
Afficher plus [+] Moins [-]Tissue distribution of phthalates in celery under different cultivation patterns and associated dietary exposure Texte intégral
2022
Zhao, Fang | Ma, Zhihong | Ping, Hua | He, Zhaoying | Li, Bingru | Gao, Yuan | Li, Cheng
To investigate tissue distribution, spatial difference, temperature variation, and potential health risks of PAEs in vegetables, celery was used as a model plant. Celery samples were collected from open fields and greenhouses from two provinces in China over four seasons. Celery tissues were analyzed for 16 PAE compounds by gas chromatography–tandem mass spectrometry. The total content of PAEs was 89.0–1130.3 μg kg⁻¹ dry weight (dw) in stems and 155.0–2730.8 μg kg⁻¹ dw in leaves. Concentrations of PAEs in celeries showed notable spatial differences (P < 0.05), and the levels in samples from open fields were lower than those in samples from plastic greenhouses. In celeries from greenhouses, higher PAE concentrations were observed for plants grown at high temperatures than in plants grown at low temperatures. Discrepancies in tissue distribution indicated different uptake pathways of PAE contaminants. Risk assessments to humans found that both carcinogenic risks and non-carcinogenic risks of PAEs via celery consumption were at an acceptable level. Further research should consider other exposure pathways of PAEs and pay special attention to reducing PAE contents in vegetables.
Afficher plus [+] Moins [-]Arsenic and cadmium induced macronutrient deficiencies trigger contrasting gene expression changes in rice Texte intégral
2022
Raghuvanshi, Rishiraj | Raut, Vaibhavi V. | Pandey, Manish | Jeyakumar, Subbiah | Verulkar, Satish | Suprasanna, Penna | Srivastava, Ashish Kumar
Arsenic (As) and cadmium (Cd), two major carcinogenic heavy metals, enters into human food chain by the consumption of rice or rice-based food products. Both As and Cd disturb plant-nutrient homeostasis and hence, reduces plant growth and crop productivity. In the present study, As/Cd modulated responses were studied in non-basmati (IR-64) and basmati (PB-1) rice varieties, at physiological, biochemical and transcriptional levels. At the seedling stage, PB-1 was found more sensitive than IR-64, in terms of root biomass; however, their shoot phenotype was comparable under As and Cd stress conditions. The ionomic data revealed significant nutrient deficiencies in As/Cd treated-roots. The principal component analysis identified NH₄⁺ as As-associated key macronutrient; while, NH₄⁺/NO₃⁻ and K⁺ was majorly associated with Cd mediated response, in both IR-64 and PB-1. Using a panel of 21 transporter gene expression, the extent of nutritional deficiency was ranked in the order of PB-1(As)<IR-64(As)<PB-1(Cd)<IR-64(Cd). A feed-forward model is proposed to explain nutrient deficiency induced de-regulation of gene expression, as observed under Cd-treated IR-64 plants, which was also validated at the level of sulphur metabolism related enzymes. Using urea supplementation, as nitrogen-fertilizer, significant mitigation was observed under As stress, as indicated by 1.018- and 0.794-fold increase in shoot biomass in IR-64 and PB-1, respectively compared to that of control. However, no significant amelioration was observed in response to supplementation of urea under Cd or potassium under As/Cd stress conditions. Thus, the study pinpointed the relative significance of various macronutrients in regulating As- and Cd-tolerance and will help in designing suitable strategies for mitigating As and/or Cd stress conditions.
Afficher plus [+] Moins [-]Spatiotemporal occurrence of phthalate esters in stormwater drains of Hong Kong, China: Mass loading and source identification Texte intégral
2022
Cao, Yaru | Xu, Shaopeng | Zhang, Kai | Lin, Huiju | Wu, Rongben | Lao, Jia-Yong | Tao, Danyang | Liu, Mengyang | Leung, Kenneth M.Y. | Lam, Paul K.S.
Urban stormwater is an important pathway for transporting anthropogenic pollutants to water bodies. Phthalate esters (PAEs) are endocrine disruptors owing to their estrogenic activity and potential carcinogenicity and their ubiquitous presence has garnered global interest. However, their transportation by urban stormwater has been largely overlooked. This study, for the first time, investigated 15 PAEs in stormwater from six major stormwater drains in the highly urbanized Hong Kong, a major metropolitan city in China. The results showed that PAEs were ubiquitous in the stormwater of Hong Kong, with total concentrations (∑₁₅PAEs) spanning from 195 to 80,500 ng/L. Bis(2-n-butoxyethyl) phthalate (DBEP), diisopentyl phthalate (DiPP), dicyclohexyl phthalate (DCHP) and di-n-pentyl phthalate (DnPP) were detected in stormwater for the first time. Spatial variations in PAEs were observed among different stormwater drains, possibly due to the different land use patterns and intensities of human activities in their respective catchments. The highest and lowest levels of ∑₁₅PAEs were found in Kwai Chung (3860 ± 1960 ng/L) and the Ng Tung River (672 ± 557 ng/L), respectively. Additionally, significantly higher concentrations of ∑₁₅PAEs in stormwater were found in the wet season (2520 ± 2050 ng/L) than in the dry season (947 ± 904 ng/L). Principal component analysis classified domestic and industrial origins as two important sources of PAEs in the stormwater of Hong Kong. Stormwater played a crucial role in transporting PAEs, with an estimated annual flux of 0.705–29.4 kg. Thus, possible stormwater management measures were proposed to protect the receiving environment and local ecosystems from stormwater.
Afficher plus [+] Moins [-]A critical review on biochar-assisted free radicals mediated redox reactions on the transformation and reduction of potentially toxic metals: Occurrence, formation, and environmental applications Texte intégral
2022
Rashid, Muhammad Saqib | Liu, Guijian | Yousaf, Balal | Hamid, Yasir | Rehman, Abdul | Arif, Muhammad | Ahmed, Rafay | Ashraf, Aniqa | Song, Yu
Potentially toxic metals have become a viable threat to the ecosystem due to their carcinogenic nature. Biochar has gained substantial interest due to its redox-mediated processes and redox-active metals. Biochar has the capacity to directly adsorb the pollutants from contaminated environments through several mechanisms such as coprecipitation, complexation, ion exchange, and electrostatic interaction. Biochar's electron-mediating potential may be influenced by the cyclic transition of surface moieties and conjugated carbon structures. Thus, pyrolysis configuration, biomass material, retention time, oxygen flow, and heating time also affect biochar's redox properties. Generally, reactive oxygen species (ROS) exist as free radicals (FRs) in radical and non-radical forms, i.e., hydroxyl radical, superoxide, nitric oxide, hydrogen peroxide, and singlet oxygen. Heavy metals are involved in the production of FRs during redox-mediated reactions, which may contribute to ROS formation. This review aims to critically evaluate the redox-mediated characteristics of biochar produced from various biomass feedstocks under different pyrolysis conditions. In addition, we assessed the impact of biochar-assisted FRs redox-mediated processes on heavy metal immobilization and mobility. We also revealed new insights into the function of FRs in biochar and its potential uses for environment-friendly remediation and reducing the dependency on fossil-based materials, utilizing local residual biomass as a raw material in terms of sustainability.
Afficher plus [+] Moins [-]Diesel exhaust particulate emissions and in vitro toxicity from Euro 3 and Euro 6 vehicles Texte intégral
2022
Zerboni, Alessandra | Rossi, Tommaso | Bengalli, Rossella | Catelani, Tiziano | Rizzi, Cristiana | Priola, Marco | Casadei, Simone | Mantecca, Paride
Incomplete combustion processes in diesel engines produce particulate matter (PM) that significantly contributes to air pollution. Currently, there remains a knowledge gap in relation to the physical and chemical characteristics and also the biological reactivity of the PM emitted from old- and new-generation diesel vehicles. In this study, the emissions from a Euro 3 diesel vehicle were compared to those from a Euro 6 car during the regeneration of a diesel particulate filter (DPF). Different driving cycles were used to collect two types of diesel exhaust particles (DEPs). The particle size distribution was monitored using an engine exhaust particle sizer spectrometer and an electrical low-pressure impactor. Although the Euro 6 vehicle emitted particulates only during DPF regeneration that primarily occurs for a few minutes at high speeds, such emissions are characterized by a higher number of ultrafine particles (<0.1 μm) compared to those from the Euro 3 diesel vehicle. The emitted particles possess different characteristics. For example, Euro 6 DEPs exhibit a lower PAH content than do Euro 3 samples; however, they are enriched in metals that were poorly detected or undetected in Euro 3 emissions. The biological effects of the two DEPs were investigated in human bronchial BEAS-2B cells exposed to 50 μg/mL of PM (corresponding to 5.2 μg/cm²), and the results revealed that Euro 3 DEPs activated the typical inflammatory and pro-carcinogenic pathways induced by combustion-derived particles, while Euro 6 DEPs were less effective in regard to activating such biological responses. Although further investigations are required, it is evident that the different in vitro effects elicited by Euro 3 and Euro 6 DEPs can be correlated with the variable chemical compositions (metals and PAHs) of the emitted particles that play a pivotal role in the inflammatory and carcinogenic potential of airborne PM.
Afficher plus [+] Moins [-]Phytostabilization of arsenic and associated physio-anatomical changes in Acanthus ilicifolius L Texte intégral
2022
Sarath, Nair G. | Shackira, A.M. | El-Serehy, Hamed A. | Hefft, Daniel Ingo | Puthur, Jos T.
The carcinogenic attribute of arsenic (As) has turned the world to focus more on the decontamination and declining the present level of As from the environment especially from the soil and water bodies. Phytoremediation has achieved a status of sustainable and eco-friendly approach of decontaminating pollutants, and in the present study, an attempt has been made to reveal the potential of As remediation by a halophyte plant, Acanthus ilicifolius L. Special attention has given to analyse the morphological, physiological and anatomical modulations in A. ilicifolius, developed in response to altering concentrations of Na₂AsO₄.7H₂O (0, 70, 80 and 90 μM). Growth of A. ilicifolius under As treatments were diminished as assessed from the reduction in leaf area, root length, dry matter accumulation, and tissue water status. However, the plants exhibited a comparatively higher tolerance index (44%) even when grown in the higher concentrations of As (90 μM). Arsenic treatment induced reduction in the photochemical activities as revealed by the pigment content, chlorophyll stability index (CSI) and Chlorophyll a fluorescence parameter. Interestingly, the thickness and diameter of the xylem walls in the leaf as well as root tissues of As treated samples increased upon increasing the As concentration. The adaptive strategies exhibited by A. ilicifolius towards varying concentrations of As is the result of coordinated responses of morpho-physiological and anatomical attributes, which make the plant a promising candidate for As remediation, especially in wetlands.
Afficher plus [+] Moins [-]Occurrence of chlorinated and brominated polycyclic aromatic hydrocarbons from electric arc furnace for steelmaking Texte intégral
2022
Yang, Lili | Shen, Jia | Zheng, Minghui | Yang, Qiuting | Li, Da | Liu, Guorui
Chlorinated and brominated polycyclic aromatic hydrocarbons (Cl/Br-PAHs) are persistent organic pollutants with potential carcinogenic toxicities that are even higher than those of their parent PAH congeners. Current knowledge of Cl/Br-PAH sources and emission characteristics is lacking. Electric arc furnace (EAF) steelmaking is a potential source for Cl/Br-PAHs, considering that preheating of raw materials before they enter the EAF could produce suitable conditions for Cl/Br-PAHs formation. In this field study, we identified EAFs as an important source of Cl/Br-PAHs and clarified their emission concentrations, fingerprints by gas chromatography coupled with high-resolution magnetic mass spectrometry. Potential formation mechanisms of Cl/Br-PAHs were also proposed. The mass concentration ranges for Σ₁₈Cl-PAHs and Σ₁₈Br-PAHs in stack gas were 25.85–4191 ng Nm⁻³ and 1.02–341 ng Nm⁻³, respectively. The variation of concentration indicated that the steel scrap composition greatly affected the production of Cl/Br-PAHs. The congener ratios including 6-chlorobenzo [a]pyrene/3-chlorofluoranthene and 1-chloroanthracene/1-chloropyrene could be used to estimate the influence of industrial sources on Cl-PAH occurrences in the air. Ring structure growth was the dominant formation pathway for Cl/Br-PAHs, distinctly different from dioxin formation mechanisms dominated by precursor dimerization and chlorination.
Afficher plus [+] Moins [-]Contribution of liquid water content enhancing aqueous phase reaction forming ambient particulate nitrosamines Texte intégral
2022
Choi, Na Rae | Park, Seungshik | Ju, Seoryeong | Lim, Yong Bin | Lee, Ji Yi | Kim, Eunhye | Kim, Soontae | Shin, Hye Jung | Kim, Yong Pyo
Contribution of liquid water content (LWC) to the levels of the carcinogenic particulate nitro(so) compounds and the chemistry affecting LWC were investigated based on the observation of seven nitrosamines and two nitramines in rural (Seosan) and urban (Seoul) area in South Korea during October 2019 and a model simulation. The concentrations of both the total nitrosamines and nitramines were higher in Seosan (12.48 ± 16.12 ng/m³ and 0.65 ± 0.71 ng/m³, respectively) than Seoul (7.41 ± 13.59 ng/m³ and 0.24 ± 0.15 ng/m³, respectively). The estimated LWC using a thermodynamic model in Seosan (12.92 ± 9.77 μg/m³) was higher than that in Seoul (6.20 ± 5.35 μg/m³) mainly due to higher relative humidity (75 ± 9% (Seosan); 62 ± 10% (Seoul)) and higher concentrations of free ammonia (0.13 ± 0.09 μmol/m³ (Seosan); 0.08 ± 0.01 μmol/m³ (Seoul)) and total nitric acid (0.09 ± 0.07 μmol/m³ (Seosan); 0.04 ± 0.02 μmol/m³ (Seoul)) in Seosan while neither fog nor rain occurred during the sampling period. The relatively high concentrations of the particulate nitrosamines (>30 ng/m³) only observed probably due to the higher LWC (>10 μg/m³) in Seosan. It implies that aqueous phase reactions involving NO₂ and/or uptake from the gas phase enhanced by LWC could be promoted in Seosan. Strong correlation between the concentrations of nitrosodi-methylamine (NDMA), an example of nitrosamines, simulated by a kinetic box model including the aqueous phase reactions and the measured concentration of NDMA in Seosan (R = 0.77; 0.37 (Seoul)) indicates that the aqueous phase reactions dominantly enhanced the NDMA concentrations in Seosan. On the other hand, it is estimated that the formation of nitrosamines by aqueous phase reaction was not significant due to the relatively lower LWC in Seoul compared to that in Seosan. Furthermore, it is presumed that nitramines are mostly emitted from the primary emission sources. This study implies that the concentration of the particulate nitrosamines can be promoted by aqueous phase reaction enhanced by LWC.
Afficher plus [+] Moins [-]