Affiner votre recherche
Résultats 1-10 de 23
Oxidative Stress Induction in Cassava Plant (Manihot Esculenta Crantz) Grown on Soil Contaminated with Diesel Texte intégral
2022
Osuntoki, Akinniyi | Olukanni, Olumide | Nwakile, Ogonna | Kabiru, Amusan
The induction of oxidative stress in plants grown on crude oil-contaminated soils was investigated using a diesel contaminated soils model. Twelve cassava stems were grown in four garden pots containing different amounts of diesel oil as contaminants: 150 ppm, 300 ppm, 600 ppm and control (0 ppm). The growth of the plants was monitored for 12 weeks, after which chlorophyll contents, total proteins, lipid peroxidation and activities of catalase, glutathione, and superoxide dismutase (antioxidant enzymes) were determined from the leaves. Significant decreases (p<0.05) were observed in the antioxidant enzymes (67-86%), total proteins (79%) and total chlorophyll content (67%) in the cassava grown on diesel contaminated soil (600 ppm) compared to the control. Consequently, there were significant increase (p<0.05) in the leaf ratio and malondialdehyde (a marker for lipid peroxidation) 0.1909 ± 04 and 1.77 ± 0.34, when compared to the control 0.1530 ± 08 sq.cm/g and 0.10±0.01 µmol/mg protein respectively. It was thus concluded that stunted growth of plants and their death in diesel or crude oil contaminated soil could be traced to oxidative stress.
Afficher plus [+] Moins [-]Developmental alterations, teratogenic effects, and oxidative disruption induced by ibuprofen, aluminum, and their binary mixture on Danio rerio Texte intégral
2021
Sánchez-Aceves, Livier M | Pérez-Alvarez, Itzayana | Gómez-Oliván, Leobardo Manuel | Islas-Flores, Hariz | Barceló, Damià
Developmental alterations, teratogenic effects, and oxidative disruption induced by ibuprofen, aluminum, and their binary mixture on Danio rerio Texte intégral
2021
Sánchez-Aceves, Livier M | Pérez-Alvarez, Itzayana | Gómez-Oliván, Leobardo Manuel | Islas-Flores, Hariz | Barceló, Damià
Several studies highlighted the ubiquitous presence of ibuprofen and aluminum in the aquatic environment around the world and demonstrated their potential to induce embryotoxic and teratogenic defects on aquatic species individually. Although studies that evaluate developmental alterations induced by mixtures of these pollutants are scarce; and, since environmental contamination presented in the form of a mixture of toxicants with different chemical properties and toxicity mechanisms capable of generating interactions; the objective of this study was to evaluate the developmental defects, teratogenic alterations, and oxidative stress induced by individual forms and the mixture of ibuprofen (IBU) and aluminum (Al) on zebrafish embryos. Oocytes exposed to environmentally relevant concentrations of IBU (0.1–20 μg L-1) and Al (0.01–8 mg L-1) and one binary mixture. The LC50 and EC50 were obtained to calculate the teratogenic index (TI). The IBU LC50, EC50, and TI were 8.06 μg L-1, 2.85 μg L-1 and 2.82. In contrast, Al LC50 was 5.0 mg L-1with an EC50 of 3.58 mg L-1 and TI of 1.39. The main alterations observed for individual compounds were hatching alterations, head malformation, skeletal deformities, hypopigmentation, pericardial edema, and heart rate impairment. The mixture also showed significant delays to embryonic development. Moreover, oxidative stress biomarkers of cellular oxidation and antioxidant defenses at 72 and 96 hpf significantly increased. Results show that environmentally relevant concentrations of ibuprofen (IBU), aluminum (Al), and their mixture promote a series of developmental defects, teratogenic effects, and oxidative disruption on D. rerio embryos, and the interaction of both substances altered the response. In conclusion, morphological and biochemical tests are suitable tools for assessing the health risk of aquatic wildlife by exposure to individual and mixed pollutants in freshwater bodies.
Afficher plus [+] Moins [-]Developmental alterations, teratogenic effects, and oxidative disruption induced by ibuprofen, aluminum, and their binary mixture on Danio rerio Texte intégral
2021
Sánchez-Aceves, Livier M. | Pérez-Alvarez, Itzayana | Gómez-Oliván, Leobardo Manuel | Islas-Flores, Hariz | Barceló, Damià | Barceló, Damià [0000-0002-8873-0491] | Consejo Superior de Investigaciones Científicas [https://ror.org/02gfc7t72]
Several studies highlighted the ubiquitous presence of ibuprofen and aluminum in the aquatic environment around the world and demonstrated their potential to induce embryotoxic and teratogenic defects on aquatic species individually. Although studies that evaluate developmental alterations induced by mixtures of these pollutants are scarce; and, since environmental contamination presented in the form of a mixture of toxicants with different chemical properties and toxicity mechanisms capable of generating interactions; the objective of this study was to evaluate the developmental defects, teratogenic alterations, and oxidative stress induced by individual forms and the mixture of ibuprofen (IBU) and aluminum (Al) on zebrafish embryos. Oocytes exposed to environmentally relevant concentrations of IBU (0.1–20 μg L-1) and Al (0.01–8 mg L-1) and one binary mixture. The LC50 and EC50 were obtained to calculate the teratogenic index (TI). The IBU LC50, EC50, and TI were 8.06 μg L-1, 2.85 μg L-1 and 2.82. In contrast, Al LC50 was 5.0 mg L-1with an EC50 of 3.58 mg L-1 and TI of 1.39. The main alterations observed for individual compounds were hatching alterations, head malformation, skeletal deformities, hypopigmentation, pericardial edema, and heart rate impairment. The mixture also showed significant delays to embryonic development. Moreover, oxidative stress biomarkers of cellular oxidation and antioxidant defenses at 72 and 96 hpf significantly increased. Results show that environmentally relevant concentrations of ibuprofen (IBU), aluminum (Al), and their mixture promote a series of developmental defects, teratogenic effects, and oxidative disruption on D. rerio embryos, and the interaction of both substances altered the response. In conclusion, morphological and biochemical tests are suitable tools for assessing the health risk of aquatic wildlife by exposure to individual and mixed pollutants in freshwater bodies. | This study was made possible by financial support from the Consejo Nacional de Ciencia y Tecnología (CONACyT, Project 300727). | Peer reviewed
Afficher plus [+] Moins [-]Carbamazepine induces hepatotoxicity in zebrafish by inhibition of the Wnt/β-catenin signaling pathway Texte intégral
2021
Bai, Zhonghui | Jia, Kun | Chen, Guilan | Liao, Xinjun | Cao, Zigang | Zhao, Yangqi | Zhang, Chunping | Lu, Huiqiang
As drug abuse has become increasingly serious, carbamazepine (CBZ) is discharged into the aquatic environment with municipal sewage, causing potential harm to aquatic organisms. Here, we utilized zebrafish, an aquatic vertebrate model, to comprehensively evaluate the hepatotoxicity of CBZ. The larvae were exposed to 0.07, 0.13, and 0.26 mmol/L CBZ from 72 hpf to 144 hpf, and the adults were exposed to 0.025, 0.05, and 0.1 mmol/L CBZ for 28 days. The substantial changes were observed in the size and histopathology of livers, indicating that CBZ induced severe hepatoxicity in the larvae and adults. Oil red O staining demonstrated CBZ exposure caused severe lipid accumulation in the livers of both larvae and adults. Furthermore, CBZ exposure facilitated hepatocyte apoptosis through TUNEL staining, which was caused by rising ROS content. Subsequently, down-regulation of genes related to the Wnt pathway in exposure groups indicated that CBZ inhibited the development of liver via the Wnt/β-catenin signaling pathway. In conclusion, CBZ induced severe hepatotoxicity by promoting lipid accumulation, generating excessive ROS production, and inhibiting the Wnt/β-catenin signaling pathway in zebrafish. The results reveal the occurrence of CBZ-induced hepatotoxicity in zebrafish and clarify its mechanism of action, which potentially illustrate environmental concerns associated with CBZ exposure.
Afficher plus [+] Moins [-]Does zebra mussel (Dreissena polymorpha) represent the freshwater counterpart of Mytilus in ecotoxicological studies? A critical review Texte intégral
2015
Binelli, A. | Della Torre, C. | Magni, S. | Parolini, M.
One of the fundamentals in the ecotoxicological studies is the need of data comparison, which can be easily reached with the help of a standardized biological model. In this context, any biological model has been still proposed for the biomonitoring and risk evaluation of freshwaters until now. The aim of this review is to illustrate the ecotoxicological studies carried out with the zebra mussel Dreissena polymorpha in order to suggest this bivalve species as possible reference organism for inland waters. In detail, we showed its application in biomonitoring, as well as for the evaluation of adverse effects induced by several pollutants, using both in vitro and in vivo experiments. We discussed the advantages by the use of D. polymorpha for ecotoxicological studies, but also the possible limitations due to its invasive nature.
Afficher plus [+] Moins [-]Toxic effects of erythromycin, ciprofloxacin and sulfamethoxazole exposure to the antioxidant system in Pseudokirchneriella subcapitata Texte intégral
2013
Nie, Xiang-Ping | Liu, Bin-Yang | Yu, Hui-Juan | Liu, Wei-Qiu | Yang, Yu-Feng
We tested antioxidant responses of the green microalga Pseudokirchneriella subcapitata exposed to different concentrations of the three antibiotics erythromycin (ETM), ciprofloxacin (CPF) and sulfamethoxazole (SMZ). Measurements included the level of lipid peroxidation, the total antioxidative capacity and three major antioxidant mechanisms: the ascorbate–glutathione cycle, the xanthophyll cycle and the enzyme activities of catalase (CAT), superoxide dismutase (SOD), guaiacol glutathione peroxidase (GPX) and glutathione-S-transferase (GST). Three antibiotics significantly affect the antioxidant system of P. subcapitata, but in different ways the alga was more tolerant to CPF and SMZ exposures than to ETM exposure. ETM caused reductions in AsA and GSH biosynthesis, ascorbate–glutathione cycle, xanthophylls cycle and antioxidant enzyme activities. The toxicity of CPF seems to be mainly overcome via induction of the ascorbate–glutathione cycle and CAT, SOD and GPX activities, while the toxicity of SMZ on the photosynthetic apparatus is predominantly reduced by the xanthophyll cycle and GST activity.
Afficher plus [+] Moins [-]Sodium hydrosulfite together with silicon detoxifies arsenic toxicity in tomato plants by modulating the AsA-GSH cycle Texte intégral
2022
Kaya, Cengiz | Ashraf, Muhammad
The main intent of the current research was to appraise if combined application of hydrogen sulfide (H₂S, 0.2 mM) and silicon (Si 2.0 mM) could improve tolerance of tomato plants to arsenic (As as sodium hydrogen arsenate heptahydrate, 0.2 mM) stress. Plant growth, chlorophylls (Chl), PSII maximum efficiency (Fv/Fm), H₂S concentration and L-cysteine desulfhydrase activity were found to be suppressed, but leaf and root As, leaf proline content, phytochelatins, malondialdehyde (MDA) and H₂O₂ as well as the activity of lipoxygenase (LOX) increased under As stress. H₂S and Si supplied together or alone enhanced the concentrations of key antioxidant biomolecules such as ascorbic acid, and reduced glutathione and the activities of key antioxidant system enzymes including catalase (CAT), superoxide dismutase (SOD), dehydroascorbate reductase (DHAR), glutathione reductase (GR), and glutathione S-transferase (GST). In comparison with individual application of H₂S or Si, the joint supplementation of both had better effect in improving growth and key biochemical processes, and reducing tissue As content, suggesting a putative collaborative role of both molecules in improving tolerance to As-toxicity in tomato plants.
Afficher plus [+] Moins [-]Strigolactone GR24 improves cadmium tolerance by regulating cadmium uptake, nitric oxide signaling and antioxidant metabolism in barley (Hordeum vulgare L.) Texte intégral
2021
Qiu, Cheng-Wei | Zhang, Can | Wang, Nian-Hong | Mao, Weihua | Wu, Feibo
Cadmium (Cd) in the food chain poses a serious hazard to human health. Therefore, a greenhouse hydroponic experiment was conducted to examine the potential of exogenously strigolactone GR24 in lessening Cd toxicity and to investigate its physiological mechanisms in the two barley genotypes, W6nk2 (Cd-sensitive) and Zhenong8 (Cd-tolerant). Exogenous application of 1 μM GR24 (strigol analogue) reduced the suppression of growth caused by 10 μM Cd, lowered plant Cd contents, increased the contents of other nutrient elements, protected chlorophyll, sustained photosynthesis, and markedly reduced Cd-induced H₂O₂ and malondialdehyde accumulation in barley. Furthermore, exogenous GR24 markedly increased NO contents and nitric oxide synthase activity in the Cd-sensitive genotype, W6nk2, effectively alleviating the Cd-induced repression of the activities of superoxide dismutase and peroxidase, increasing reduced glutathione (GSH) and ascorbic acid (AsA) pools and activities of AsA-GSH cycle including ascorbate peroxidase, glutathione peroxidase, glutathione reductase, dehydroascorbate reductase and monodehydroascorbate reductase. The findings of the present study indicate that GR24 could be a candidate for Cd detoxification by decreasing Cd contents, balancing nutrient elements, and protecting barley plants from toxic oxidation via indirectly eliminating reactive oxygen species (ROS), consequently contributing to reducing the potential risk of Cd pollution.
Afficher plus [+] Moins [-]Comparative growth and cellular responses of toxigenic Microcystis exposed to different types of microplastics at various doses Texte intégral
2021
Wan, Qianruo | Li, Jieming | Chen, Yanran
Microplastics (MPs) pollution frequently co-occur with Microcystis-dominated blooms in freshwaters, but MPs effects on toxigenic Microcystis growth and effect mechanisms remained poorly understood. This study used 0.5 μm-size polyethylene (PE) and polyvinyl chloride (PVC) to explore dose- and time-dependent effects of single and combined MPs (i.e., PE + PVC) on toxigenic Microcystis growth and cellular responses during 16 day-test. Results showed that Microcystis growth and cellular responses depended on exposure time, MPs dose and type. MPs elicited hormesis effect in early stage at low dose (5 mg/L), while increasingly inhibited growth with rising PVC or PE + PVC dose but declining PE dose (5, 10, 50 mg/L) in mid-late stage, with stress intensity of PE + PVC > PVC > PE. Further analyses revealed unobvious cell damage under MPs stress, largely because antioxidases were increasingly activated as MPs stress enhanced. Unicellular MCs release ability during mid stage almost coincided with total/bound amount and each fraction of ex-poly and ex-pro trends under MPs stress. Significant positive relationship existed between MCs release ability and ex-poly/ex-pro fractions and total amount of Microcystis cells along mid-late stage under MPs stress, validating that ex-poly/ex-pro production was regulated as a result of MCs release. Besides, unicellular MCs production ability was generally positively correlated with soluble, tightly-bound and total ex-poly and ex-pro at late stage. These suggested that cellular antioxidants, MCs production/release ability and ex-poly/ex-pro production of Microcystis could be coupled to exert integrated defense against MPs stress to protect surviving cells in Microcystis population. These findings are crucial for acquiring the fate of Microcystis-dominated blooms co-occurring with MPs pollution, and reasonably assessing and managing involved eco-risks.
Afficher plus [+] Moins [-]Exposure to 2,3,3′,4,4′,5-hexachlorobiphenyl promotes nonalcoholic fatty liver disease development in C57BL/6 mice Texte intégral
2020
Shan, Qiuli | Chen, Ningning | Liu, Wei | Qu, Fan | Chen, Anhui
Previous in vitro studies have indicated that 2,3,3′,4,4′,5-hexachlorobiphenyl (PCB 156) may be a new contributor to metabolic disruption and may further cause the occurrence of nonalcoholic fatty liver disease (NAFLD). However, no study has clarified the specific contributions of PCB 156 to NAFLD progression by constructing an in vivo model. Herein, we evaluated the effects of PCB 156 treatment (55 mg/kg, i.p.) on the livers of C57BL/6 mice fed a control diet (CD) or a high-fat diet (HFD). The results showed that PCB 156 administration increased intra-abdominal fat mass, hepatic lipid levels and dyslipidemia in the CD-fed group and aggravated NAFLD in HFD-fed group. By using transcriptomics studies and biological methods, we found that the genes expression involved in lipid metabolism pathways, such as lipogenesis, lipid accumulation and lipid β-oxidation, was greatly altered in liver tissues exposed to PCB 156. In addition, the cytochrome P450 pathway, peroxisome proliferator-activated receptors (PPARs) and the glutathione metabolism pathway were significantly activated following exposure to PCB 156. Furthermore, PCB 156 exposure increased serum transaminase levels and lipid peroxidation, and the redox-related genes were significantly dysregulated in liver tissue. In conclusion, our data suggested that PCB 156 could promote NAFLD development by altering the expression of genes related to lipid metabolism and inducing oxidative stress.
Afficher plus [+] Moins [-]Determination of metals and pharmaceutical compounds released in hospital wastewater from Toluca, Mexico, and evaluation of their toxic impact Texte intégral
2018
Pérez-Alvarez, Itzayana | Islas-Flores, Hariz | Gómez-Oliván, Leobardo Manuel | Barceló, Damià | López De Alda, Miren | Pérez Solsona, Sandra | Sánchez-Aceves, Livier | SanJuan-Reyes, Nely | Galar-Martínez, Marcela
Due to the activities inherent to medical care units, the hospital effluent released contains diverse contaminants such as tensoactives, disinfectants, metals, pharmaceutical products and chemical reagents, which are potentially toxic to the environment since they receive no treatment or are not effectively removed by such treatment before entering the drain. They are incorporated into municipal wastewater, eventually entering water bodies where they can have harmful effects on organisms and can result in ecological damage. To determine the toxicological risk induced by this type of eflluents, eight metals and 11 pharmaceuticals were quantified, in effluent from a hospital. Developmental effects, teratogenesis and oxidative stress induction were evaluated in two bioindicator species: Xenopus laevis and Lithobates catesbeianus. FETAX (frog embryo teratogenesis assay–Xenopus) was used to obtain the median lethal concentration (LC50), effective concentration inducing 50% malformation (EC50), teratogenic index (TI), minimum concentration to inhibit growth (MCIG), and the types of malformation induced. Twenty oocytes in midblastula transition were exposed to six concentrations of effluent (0.1, 0.3, 0.5, 0.7, 0.9, 1%) and negative and positive (6-aminonicotinamide) controls. After 96 h of exposure, diverse biomarkers of oxidative damage were evaluated: hydroperoxide content, lipid peroxidation, protein carbonyl content, and the antioxidant enzymes superoxide dismutase and catalase. TI was 3.8 in X. laevis and 4.0 in L. catesbeianus, both exceed the value in the FETAX protocol (1.2), indicating that this effluent is teratogenic to both species. Growth inhibition was induced as well as diverse malformation including microcephaly, cardiac and facial edema, eye malformations, and notochord, tail, fin and gut damage. Significant differences relative to the control group were observed in both species with all biomarkers. This hospital effluent contains contaminants which represents a toxic risk, since these substances are teratogenic to the bioindicators used. The mechanism of damage induction may be associated with oxidative stress.
Afficher plus [+] Moins [-]