Affiner votre recherche
Résultats 1-10 de 75
Impact of brominated flame retardants on lipid metabolism: An in vitro approach
2022
Maia, Maria Luz | Sousa, Sara | Pestana, Diogo | Faria, Ana | Teixeira, Diana | Delerue-Matos, Cristina | Domingues, Valentina Fernandes | Calhau, Conceição
Brominated flame retardants (BFRs) are chemicals employed to lower the flammability of several objects. These endocrine disruptor chemicals are lipophilic and persistent in the environment. Due to these characteristics some have been restricted or banned by the European Union, and replaced by several new chemicals, the novel BFRs (NBFRs). BFRs are widely detected in human samples, such as adipose tissue and some were linked with altered thyroid hormone levels, liver toxicity, diabetes and metabolic syndrome in humans. However, the disturbance in lipid metabolism caused by BFRs with emphases to NBFRs remains poorly understood. In this study, we used a pre-adipocyte (3T3-L1) cell line and a hepatocyte (HepG2) cell line to investigate the possible lipid metabolism disruption caused by four BFRs: hexabromobenzene (HBB), pentabromotoluene (PBT), 2-ethylhexyl-2,3,4,5-tetrabromobenzoate (TBB) and hexabromocyclododecane (HBCD). For that purpose, proliferation and Oil Red O assays, as well as, medium fatty acids profile evaluation using Gas chromatography and RNA extraction for quantitative RT-PCR assays were performed. We detected a significant reduction in the proliferation of preadipocytes and an increased lipid accumulation during differentiation caused by HBB. This BFR also lead to a significant increased expression of IL-1β and decreased expression of PGC-1α and adiponectin. Nevertheless, PBT, TBB and HBCD show to increase lipid accumulation in hepatocytes. PBT also display a significant increase of PPARγ gene expression. Lipid accumulation in the cells can occur by diverse mechanisms depending on the BFR. These results highlight the importance of endocrine disruptor compounds in obesity etiopathogeny.
Afficher plus [+] Moins [-]Effect-directed analysis for revealing aryl hydrocarbon receptor agonists in sediment samples from an electronic waste recycling town in China
2022
Ma, Qianchi | Liu, Yanna | Yang, Xiaoxi | Guo, Yunhe | Xiang, Tongtong | Wang, Yi | Yan, Yuhao | Li, Danyang | Nie, Tong | Li, Zikang | Qu, Guangbo | Jiang, Guibin
Exposure to electronic and electrical waste (e-waste) has been related to a few adverse health effects. In this study, sediment samples from an e-waste recycling town in China were collected, and aryl hydrocarbon receptor (AhR) agonists in the samples were identified using an effect-directed analysis (EDA) strategy. The CBG2.8D cell line reporter gene bioassay was used as a toxicity test, while suspect screening against chemical databases was performed for potential AhR agonist identification where both gas chromatography- and liquid chromatography-high resolution mass spectrometry analyses were run. When the original sample extract showed high AhR-mediated activity, sample fractionation was performed, and fractions exhibiting high bioactivity were chemically analyzed again to reveal the corresponding AhR agonists. In total, 23 AhR agonists were identified, including 14 commonly known ones and 9 new ones. Benzo [k]fluoranthene and 6-nitrochrysene were the dominant AhR agonists, covering 16–71% and 2.7–12%, respectively, of the AhR activation effects measured in the parent extracts. The newly identified AhR-active chemicals combined explained 0.13–0.20% of the parent extracts’ effects, with 7,12-dimethylbenz [a]anthracene and 8,9,11-trimethylbenz [a]anthracene being the major contributors. A diagnostic isomer ratio analysis of polycyclic aromatic hydrocarbons suggested that the major source of AhR agonists identified in these e-waste related sediment samples were probably petroleum product combustion and biomass combustion. In the future, for a more comprehensive AhR agonist investigation, in-house chemical synthesis and purification, and, when necessary, a secondary sample fractionation, would be beneficial.
Afficher plus [+] Moins [-]Biological toxicity risk assessment of two potential neutral carbon diesel fuel substitutes
2022
Arias, Silvana | Estrada, Verónica | Ortiz, Isabel C. | Molina, Francisco J. | Agudelo, John R.
We investigated the biological response of soluble organic fraction (SOF) and water-soluble fraction (WSF) extracted from particulate matter (PM) emitted by an automotive diesel engine operating in a representative urban driving condition. The engine was fueled with ultra-low sulfur diesel (ULSD), and its binary blends by volume with 13% of butanol (Bu13), and with hydrotreated vegetable oil (HVO) at 13% (HVO13) and 20% (HVO20). Cytotoxicity, genotoxicity, oxidative DNA damage and ecotoxicity tests were carried out, and 16 polycyclic aromatic hydrocarbons (PAH) expressed as tbenzo(a)pyrene total toxicity equivalent (BaP-TEQ) were also analyzed. The Hepatocarcinoma epithelial cell line (HepG2) was exposed to SOF for 24 h and analyzed using comet assay, with the inclusion of formamidopyrimidine DNA glycosylase (FPG) and endonuclease III (Endo III) to recognize oxidized DNA bases. The WSF was evaluated through acute ecotoxicity tests with the aquatic microcrustacean Daphnia pulex (D. Pulex). Results showed that there was no cytotoxic activity for all tested SOF concentrations. Genotoxic responses by all the SOF samples were at same level, except for the HVO13 which was weaker in the absence of the enzymes. The addition of the FPG and Endo III enzymes resulted in a significant increase in the comet tail, indicating that the DNA damage from SOF for all tested fuel blends involves oxidative damage including a higher level of oxidized purines for ULSD and Bu13 in comparison with HVO blends, but the oxidized pyrimidines for HVO blends were slightly higher compared to Bu13. The WSF did not show acute ecotoxicity for any of the fuels. Unlike other samples, Bu13-derived particles significantly increase the BaP-TEQ. The contribution to the genotoxic activity and oxidative DNA from SOF was not correlated to BaP-TEQ, which means that the biological activity of PM might be affected also by other toxic compounds present in particulate phase.
Afficher plus [+] Moins [-]Polybrominated diphenyl ethers exert genotoxic effects in pantropic spotted dolphin fibroblast cell lines
2021
Rajput, Imran Rashid | Yaqoob, Summra | Yajing, Sun | Sanganyado, Edmond | Wenhua, Liu
Cetaceans accumulate persistent and toxic substances such as polybrominated diphenyl ethers in their tissue. PBDEs are ubiquitous in marine environments, and their exposure to mammals is linked to numerous health effects such as endocrine disruption, neurotoxicity, carcinogenicity, and fetal toxicity. However, the toxicological effects and mechanism of toxicity in cetaceans remains poorly understood. The effects of BDE-47 (0.1–0.5 μg mL⁻¹), BDE-100 (0.1–0.5 μg mL⁻¹), and BDE-209 (0.25–1.0 μg mL⁻¹) exposure on cell viability, oxidative stress, mitochondrial structure, and apoptosis were evaluated using a recently established pantropical spotted dolphin (Stenella attenuata) skin fibroblast cell line (PSD-LWHT) as an in vitro model. However, the production of reactive oxygen species (ROS) increased following exposure to 1.0 μg mL⁻¹ PBDE while superoxide anion, hydroxyl radicals, and inducible nitric oxide increased in a dose-dependent manner. At 0.5–1.0 μg mL⁻¹, PBDEs significantly reduced the mitochondrial membrane potential. In addition, exposure to BDE-47 and -209 significantly affected mitochondrial structure as well as cell signaling and transduction compared to BDE-100. Although PBDE exposure did not affect cell viability, a significant increase in cell apoptosis markers (Bcl2 and caspase-9) was observed. This study demonstrated that BDE-47, -100, and −209 congeners might cause cytotoxic and genotoxic effects as they play a crucial role in the dysregulation of oxidative stress and alteration of mitochondrial and cell membrane structure and activity in the fibroblast cells. Hence, these results suggest that PBDEs might have adverse health effects on cetaceans inhabiting contaminated marine environments.
Afficher plus [+] Moins [-]Increased m6A modification of RNA methylation related to the inhibition of demethylase FTO contributes to MEHP-induced Leydig cell injury☆
2021
Zhao, Tianxin | Wang, Junke | Wu, Yuhao | Han, Lindong | Chen, Jiadong | Wei, Yuexin | Shen, Lianju | Long, Chunlan | Wu, Shengde | Wei, Guanghui
N⁶-methyladenosine (m6A) modification, the most prevalent form of RNA methylation, modulates gene expression post-transcriptionally. Di-(2-ethylhexyl) phthalate (DEHP) is a common environmental endocrine disrupting chemical that induces testicular injury due to the inhibition of the demethylase fat mass and obesity-associated protein (FTO) and increases the m6A modification. How FTO-mediated m6A modification in testicular Leydig cell injury induced by DEHP remains unclear. Here, the TM3 Leydig cell line was treated with mono-(2-ethylhexyl) phthalate (MEHP), the main metabolite of DEHP in the body, as well as FB23-2, an inhibitor of FTO. Decreased levels of testosterone in the culture supernatant, significantly increased apoptosis, and a remarkable upregulation of global m6A modification were found in both TM3 cells treated with MEHP and FB23-2. Transcriptome sequencing showed that both treatments significantly induced apoptosis-associated gene expression. Methylated RNA immunoprecipitation sequencing showed that the Leydig cell injury induced by upregulated m6A modification could be associated with multiple physiological disorders, including histone acetylation, reactive oxygen species biosynthesis, MAPK signaling pathway, hormone secretion regulation, autophagy regulation, and male gonadal development. Overall, the inhibition of FTO-mediated up-regulation of m6A could be involved in MEHP-induced Leydig cell apoptosis.
Afficher plus [+] Moins [-]Dibutyl phthalate induces allergic airway inflammation in rats via inhibition of the Nrf2/TSLP/JAK1 pathway
2020
Wang, Xiaoqiao | Han, Bing | Wu, Pengfei | Li, Siyu | Lv, Yueying | Lu, Jingjing | Yang, Qingyue | Li, Jiayi | Zhu, Yan | Zhang, Zhigang
Dibutyl phthalate (DBP), an important plastic contaminant in the environment, is known to cause organ toxicity. Although current research has shown that DBP-induced organ toxicity is associated with oxidative stress, the toxic effect of DBP on the lungs have not been fully elucidated. Therefore, we investigated the potential mechanism by which DBP induces pulmonary toxicity using a model of DBP-induced allergic airway inflammation in rats. The results showed that chronic exposure to DBP induced histopathological damage, inflammation, oxidative stress, apoptosis, and increased the protein levels of thymic stromal lymphopoietin (TSLP) and its downstream protein Janus kinase 1 (JAK1) and signal transducer and activator of transcription 6 (STAT6). Moreover, DBP exposure inhibited nuclear factor-erythroid-2-related factor 2 (Nrf2) and levels of its target genes NAD(P)H quinone oxidoreductase 1 (NQO1) and heme oxygenase-1 (HO-1). Additionally, using in vitro experiments, we found that DBP induced oxidative stress, reduced cell viability, and inhibited the Nrf2/HO-1/NQO1 pathway in mouse alveolar type II epithelial cell line. Overall, these data demonstrate that DBP induces allergic airway inflammation in rats via inhibition of the Nrf2/TSLP/JAK1 pathway.
Afficher plus [+] Moins [-]Etoxazole induces testicular malfunction in mice by dysregulating mitochondrial function and calcium homeostasis
2020
Epidemiological relationships between pesticide use and male infertility have been suggested for a long time. Etoxazole (ETX), an oxazoline pesticide, has been extensively used for pest eradication. It is considered relatively safe and has low mammalian toxicity because it specifically inhibits chitin synthesis. However, ETX may have toxic effects on the reproductive system. In this study, we examined the effects of ETX on the reproductive system using mouse testis cell lines (TM3 for Leydig cells and TM4 for Sertoli cells) and C57BL/6 male mice. We confirmed that ETX has anti-proliferative effects on the TM3 and TM4 cell lines. Moreover, ETX induced mitochondrial dysfunction and hampers calcium homeostasis. Western blot analysis of MAPK and Akt signaling cascades was performed to demonstrate the mode of action of ETX at a molecular level. Moreover, ETX induced misregulation of genes related to testicular function. Upon oral administration of ETX in C57BL/6 male mice, testis weight was reduced and transcriptional expression related to testis function was altered. These results indicate that ETX induces testicular toxicity by inducing mitochondrial dysfunction and calcium imbalance and regulating gene expression.
Afficher plus [+] Moins [-]Studying the mixture effects of brominated flame retardants and metal ions by comet assay
2020
Wang, Biyan | Wang, Haiyan | Han, Daxiong | Chen, Jinming | Yin, Yan
This study was designed to evaluate the sensitivities of diverse cell lines on DNA damage effects and genotoxic effects of three brominated flame retardants (BFRs) and three metal ions (Cu²⁺, Cd²⁺, Hg²⁺) by comet assay. First, THP-1 was identified as the most sensitive cell line in terms of DNA damage among 11 kinds of cells screened. Accordingly, the THP-1 cell line was used as a model in subsequent single/combined genotoxicity tests. Single exposure tests to BFRs or metal ions revealed that the DNA damage effects increased with increasing exposure concentration. In combined exposure tests, BFRs (at concentrations of 1/2 EC₅₀) were deployed in combination with different concentrations of Cu²⁺, Cd²⁺, or Hg²⁺. The results showed that the % tail DNA values were significantly increased by most mixtures. Our findings on combined toxic effects by comet assay provide valuable information for setting valid environmental safety evaluation standards.
Afficher plus [+] Moins [-]Particulate matter (PM10) enhances RNA virus infection through modulation of innate immune responses
2020
Miśra, R̥cā | Krishnamoorthy, Pandikannan | Gangamma, S. | Raut, Ashwin Ashok | Kumar, Himanshu
Sensing of pathogens by specialized receptors is the hallmark of the innate immunity. Innate immune response also mounts a defense response against various allergens and pollutants including particulate matter present in the atmosphere. Air pollution has been included as the top threat to global health declared by WHO which aims to cover more than three billion people against health emergencies from 2019 to 2023. Particulate matter (PM), one of the major components of air pollution, is a significant risk factor for many human diseases and its adverse effects include morbidity and premature deaths throughout the world. Several clinical and epidemiological studies have identified a key link between the PM existence and the prevalence of respiratory and inflammatory disorders. However, the underlying molecular mechanism is not well understood. Here, we investigated the influence of air pollutant, PM₁₀ (particles with aerodynamic diameter less than 10 μm) during RNA virus infections using Highly Pathogenic Avian Influenza (HPAI) – H5N1 virus. We thus characterized the transcriptomic profile of lung epithelial cell line, A549 treated with PM₁₀ prior to H5N1infection, which is known to cause severe lung damage and respiratory disease. We found that PM₁₀ enhances vulnerability (by cellular damage) and regulates virus infectivity to enhance overall pathogenic burden in the lung cells. Additionally, the transcriptomic profile highlights the connection of host factors related to various metabolic pathways and immune responses which were dysregulated during virus infection. Collectively, our findings suggest a strong link between the prevalence of respiratory illness and its association with the air quality.
Afficher plus [+] Moins [-]Application of general toxic effects of ionic liquids to predict toxicities of ionic liquids to Spodoptera frugiperda 9, Eisenia fetida, Caenorhabditis elegans, and Danio rerio
2019
Cho, Chul-Woong | Yun, Yeoung-Sang
Modeling for the toxicity of ionic liquids (ILs) is necessary to fill data gaps for untested chemicals and to understand the relevant mechanisms at the molecular level. In order for many researchers to easily predict toxicity and/or develop some prediction model, simple method(s) based on a single parameter should be proposed. Therefore, previously our group developed a comprehensive toxicity prediction model with unified linear free-energy relationship descriptors to address the single parameter for predicting the toxicities, as follows (Cho et al., 2016b).Log 1/toxicity in the unit of mM= (2.254 Ec – 2.545 Sc + 0.646 Ac – 1.471 Bc + 1.650 Vc + 2.917 J+ – 0.201 Ea + 0.418 Va + 0.131 J−) – 0.709.It is considered that the model can calculate the general toxicological effect of ILs in parenthesis, as it was developed on the basis of numerous toxic effects i.e., 58 toxicity testing methods and about 1600 data points. In order to check the hypothesis, the values calculated by the model were correlated with four different datasets from insect cell line (Spodoptera frugiperda 9), earthworm (Eisenia fetida), nematode (Caenorhabditis elegans), and fish (Danio rerio). The results clearly showed that the calculated values are in good agreement with each dataset. In the case of S. frugiperda 9 cells, the calculated parameters were correlated with log1/LC50 values, measured after 24 h and 48 h incubation, in R2 of 0.67 and 0.88, respectively. The R2 values for the earthworm, nematode, and fish were 0.88, 0.96, and 0.94–0.95, respectively. This study confirmed that the comprehensive model can be simply and accurately used to predict toxicity of ILs.
Afficher plus [+] Moins [-]