Affiner votre recherche
Résultats 1-10 de 38
Synthesized effects of medium-term exposure to seawater acidification and microplastics on the physiology and energy budget of the thick shell mussel Mytilus coruscus
2022
Sui, Yanming | Zhang, Tao | Yao, Xinyun | Yan, Ming | Yang, Liguo | Mohsen, Mohamed | Nguyen, Haidang | Zhang, Shengmao | Jiang, Hucheng | Lv, Linlan | Zheng, Liang
Ocean acidification (OA) and microplastics (MPs) contamination are two results of human excises. In regions like estuarine areas, OA and MPs exposure are happening at the same time. The current research investigated the synthesized effects of OA and MPs exposure for a medium-term duration on the physiology and energy budget of the thick shell mussel Mytilus coruscus. Mussels were treated by six combinations of three MPs levels (0, 10 and 1000 items L⁻¹) × two pH levels (7.3, 8.1) for 21 d. As a result, under pH 7.3, clearance rate (CR), food absorption efficiency (AE), respiration rate (RR), and scope for growth (SFG) significantly decreased, while the fecal organic dry weight ratio (E) significantly increased. 1000 items L⁻¹ MPs led to decrease of CR, E, SFG and increase of AE under pH 8.1. Interactive effects from combination of pH and MPs were found in terms of CR, AE, E and RR, but not for SFG of M. coruscus.
Afficher plus [+] Moins [-]Using time-lapse omics correlations to integrate toxicological pathways of a formulated fungicide in a soil invertebrate
2019
Simões, Tiago | Novais, Sara C. | Natal-da-Luz, Tiago | Devreese, Bart | de Boer, Tjalf | Roelofs, Dick | Sousa, José P. | Straalen, N. M. van | Lemos, Marco F.L.
The use of an integrative molecular approach can actively improve the evaluation of environmental health status and impact of chemicals, providing the knowledge to develop sentinel tools that can be integrated in risk assessment studies, since gene and protein expressions represent the first response barriers to anthropogenic stress.This work aimed to determine the mechanisms of toxic action of a widely applied fungicide formulation (chlorothalonil), following a time series approach and using a soil model arthropod, Folsomia candida. To link effects at different levels of biological organization, data were collected on reproduction, gene expression and protein levels, in a time series during exposure to a natural soil.Results showed a mechanistic mode of action for chlorothalonil, affecting pathways of detoxification and excretion, immune response, cellular respiration, protein metabolism and oxidative stress defense, causing irregular cell signaling (JNK and NOD ½ pathways), DNA damage and abnormal cell proliferation, leading to impairment in developmental features such as molting cycle and reproduction. The omics datasets presented highly significant positive correlations between the gene expression levels at a certain time-point and the corresponding protein products 2–3 days later. The integrated omics in this study has provided useful insights into pesticide mechanisms of toxicity, evidencing the relevance of such analyses in toxicological studies, and highlighting the importance of considering a time-series when integrating these datasets.
Afficher plus [+] Moins [-]Fresh chicken manure fumigation reduces the inhibition time of chloropicrin on soil bacteria and fungi and increases beneficial microorganisms
2021
Zhang, Daqi | Cheng, Hongyan | Hao, Baoqiang | Li, Qingjie | Wu, Jiajia | Zhang, Yi | Fang, Wensheng | Yan, Dongdong | Li, Yuan | Wang, Qiuxia | Jin, Xi | He, Lin | Cao, Aocheng
Chloropicrin (CP) controls soil-borne plant diseases caused by pathogenic microbes, increases crop yield, but has a long-term inhibitory effect on beneficial soil microorganisms. Therefore, we evaluated the effects of biofumigation material fresh chicken manure (FCM) on soil microorganisms, and the duration of those effects in this experiment. Our results showed that in the laboratory, FCM significantly increased substrate-induced respiration (SIR) of soil microorganisms by 2.2–3.2 times at 80 d compared to the control, however, CP significantly inhibited the SIR of soil microorganisms. FCM and CP increased NH4+-N concentration within 40 days which then returned to the control level. FCM increased NO3--N by 2.82–5.78 times by 80 days, compared with the control, while the concentration of NO3--N in the CP treatment was not significantly different from the control at the 80 day. Although in the laboratory FCM inhibited the relative abundance of 16 S rRNA and the nitrogen cycle functional genes AOA amoA, AOB amoA, nirK and nosZ over a 40-day period, the taxonomic diversity of soil bacteria and fungi in the FCM treatment were restored to unfumigated level within 90 days in the field. However, CP treatment has a strong inhibitory effect on soil microorganisms after 90 days. Importantly, the relative abundance of some beneficial microorganisms that control soil-borne pathogenic microbes or degrade pollutants increased significantly in FCM, including Bacillus, Pseudomonas and Streptomyces bacterial genera and Chaetomium and Mycothermus fungal genera. Noteworthy, like CP, FCM still had a strong inhibitory effect on Fusarium at 90 d. Our results indicated that FCM not only increased the content of inorganic nitrogen and improved the respiration rate of soil microorganisms, but it also shortened the recovery time of beneficial soil microorganisms and increased taxonomic diversity. Our previous reports showed that FCM and CP treatments had the same effect in disease control and crop growth. Combined with the results of this experiment, we believe that FCM has the potential to replace CP, which would eliminate CP's detrimental environmental impact, improve farmer safety and promote sustainable crop production.
Afficher plus [+] Moins [-]Effect of differently methyl-substituted ionic liquids on Scenedesmus obliquus growth, photosynthesis, respiration, and ultrastructure
2019
Fan, Huiyang | Jin, Mingkang | Wang, Huan | Xu, Qianru | Xu, Lei | Wang, Chenxuanzi | Du, Shaoting | Liu, Huijun
Concerns have been raised regarding the ecotoxicity of ionic liquids (ILs) owing to their wide usage in numerous fields. Three imidazolium chloride ILs with different numbers of methyl substituents, 1-decyl-imidazolium chloride ([C10IM]Cl), 1-decyl-3-methylimidazolium chloride ([C10MIM]Cl), and 1-decyl-2,3-dimethylimidazolium chloride ([C10DMIM]Cl), were examined to assess their effects on growth, photosynthesis pigments content, chlorophyll fluorescence, photosynthetic and respiration rate, and cellular ultrastructure of Scenedesmus obliquus. The results showed that algal growth was significantly inhibited by ILs treatments. The observed IC50,48h doses were 0.10 mg/L [C10IM]Cl, 0.01 mg/L [C10MIM]Cl, and 0.02 mg/L [C10DMIM]Cl. The chlorophyll a, chlorophyll b, and total chlorophyll content declined, and the chlorophyll fluorescence parameters, minimal fluorescence yield (F0), maximal fluorescence yield (Fm), maximum quantum yield of PSII photochemistry (Fv/Fm), effective quantum yield of PSII [Y(II)], non-photochemical quenching (NPQ) and non-photosynthetic losses yield [Y(NO)] were notably affected by ILs in a dose-dependent manner. ILs affected the primary photosynthetic reaction, impaired heat dissipation capability, and diminished photosynthetic efficiency, indicating negative effects on photosystem II. The photosynthetic and respiration rates of algal cells were also reduced due to the ILs treatments. The adverse effects of ILs on plasmolysis and chloroplast deformation were examined using ultrastructural analyses; chloroplast swelling and lamellar structure almost disappeared after the [C10MIM]Cl treatment, and an increased number of starch grains and vacuoles was observed after all ILs treatments. The results indicated that one-methyl-substituted ILs were more toxic than non-methyl-substituted ILs, which were also more toxic than di-methyl-substituted ILs. The toxicity of the examined ILs showed the following order: [C10IM]Cl < [C10DMIM]Cl ≤ [C10MIM]Cl.
Afficher plus [+] Moins [-]Tolerance and resistance characteristics of microalgae Scenedesmus sp. LX1 to methylisothiazolinone
2018
Wang, Xiao-Xiong | Zhang, Tian-Yuan | Dao, Guo-Hua | Hu, Hong-Ying
Methylisothiazolinone (MIT) has been widely used to control bacterial growth in reverse osmosis (RO) systems. However, MIT's toxicity on microalgae should be determined because residual MIT is concentrated into RO concentrate (ROC) and might have a severe impact on microalgae-based ROC treatment. This study investigated the tolerance of Scenedesmus sp. LX1 to MIT and revealed the mechanism of algal growth inhibition and toxicity resistance. Scenedesmus sp. LX1 was inhibited by MIT with a half-maximal effective concentration at 72 h (72 h-EC50) of 1.00 mg/L, but the strain recovered from the inhibition when its growth was not completely inhibited. It was observed that this inhibition's effect on subsequent growth was weak, and the removal of MIT was the primary reason for the recovery. Properly increasing the initial algal density significantly shortened the adaptation time for accelerated recovery in a MIT-containing culture. Photosynthesis damage by MIT was one of the primary reasons for growth inhibition, but microalgal cell respiration and adenosine triphosphate (ATP) synthesis were not completely inhibited, and the algae were still alive even when growth was completely inhibited, which was notably different from observations made with bacteria and fungi. The algae synthesized more chlorophyll, antioxidant enzymes of superoxide dismutase (SOD) and catalase (CAT), and small molecules, such as reduced glutathione (GSH), to resist MIT poisoning. The microalgae-based process could treat the MIT-containing ROC, since MIT was added for only several hours a week in municipal wastewater reclamation RO processes, and the MIT average concentration was considerably lower than the maximum concentration that algae could tolerate.
Afficher plus [+] Moins [-]Uranium toxicity to aquatic invertebrates: A laboratory assay
2018
Bergmann, Melissa | Sobral, Olimpia | Pratas, João | Graça, Manuel A.S.
Uranium mining is an environmental concern because of runoff and the potential for toxic effects on the biota. To investigate uranium toxicity to freshwater invertebrates, we conducted a 96-h acute toxicity test to determine lethal concentrations (testing concentrations up to 262 mg L⁻¹) for three stream invertebrates: a shredder caddisfly, Schizopelex festiva Rambur (Trichoptera, Sericostomatidae); a detritivorous isopod, Proasellus sp. (Isopoda, Asellidae); and a scraper gastropod, Theodoxus fluviatilis (Gastropoda, Neritidae). Next, we ran a chronic-toxicity test with the most tolerant species (S. festiva) to assess if uranium concentrations found in some local streams (up to 25 μg L⁻¹) affect feeding, growth and respiration rates. Finally, we investigated whether S. festiva takes up uranium from the water and/or from ingested food. In the acute test, S. festiva survived in all uranium concentrations tested. LC₅₀-96-h for Proasellus sp and T. fluviatilis were 142 mg L⁻¹ and 24 mg L⁻¹, respectively. Specimens of S. festiva exposed to 25 μg L⁻¹ had 47% reduced growth compared with specimens under control conditions (21.5 ± 2.9 vs. 40.6 ± 4.9 μg of mass increase animal⁻¹·day⁻¹). Respiration rates (0.40 ± 0.03 μg O₂·h⁻¹·mg animal⁻¹) and consumption rates (0.54 ± 0.05 μg μg animal⁻¹·day⁻¹; means ± SE) did not differ between treatments. Under laboratory conditions S. festiva accumulated uranium from both the water and the ingested food. Our results indicate that uranium can be less toxic than other metals or metalloids produced by mining activities. However, even at the low concentrations observed in streams affected by abandoned mines, uranium can impair physiological processes, is bioaccumulated, and is potentially transferred through food webs.
Afficher plus [+] Moins [-]Mitochondrial dysfunction, perturbations of mitochondrial dynamics and biogenesis involved in endothelial injury induced by silica nanoparticles
2018
Guo, Caixia | Wang, Ji | Jing, Li | Ma, Ru | Liu, Xiaoying | Gao, Lifang | Cao, Lige | Duan, Junchao | Zhou, Xianqing | Li, Yanbo | Sun, Zhiwei
As silica nanoparticles (SiNPs) pervade the global economy, however, the followed emissions during the manufacturing, use, and disposal stages inevitably bring an environmental release, potentially result in harmful impacts. Endothelial dysfunction precedes cardiovascular disease, and is often accompanied by mitochondrial impairment and dysfunction. We had reported endothelial dysfunction induced by SiNPs, however, the related mechanisms by which SiNPs interact with mitochondria are not well understood. In the present study, we examined SiNPs-induced mitochondrial dysfunction, and further demonstrated their adverse effects on mitochondrial dynamics and biogenesis in endothelial cells (HUVECs). Consequently, SiNPs entered mitochondria, caused mitochondrial swelling, cristae disruption and even disappearance. Further analyses revealed SiNPs increased the intracellular level of mitochondrial reactive oxygen species, eventually resulting in the collapse of mitochondrial membrane potential, impairments in ATP synthesis, cellular respiration and the activities of three ATP-dependent enzymes (including Na+/K+-ATPase, Ca2+-ATPase and Ca2+/Mg2+-ATPase), as well as an elevated intracellular calcium level. Furthermore, mitochondria in SiNPs-treated HUVECs displayed a fission phenotype. Accordingly, dysregulation of the key gene expressions (FIS1, DRP1, OPA1, Mfn1 and Mfn2) involved in fission/fusion event further certified the SiNPs-induced perturbation of mitochondrial dynamics. Meanwhile, SiNPs-treated HUVECs displayed declined levels of mitochondrial DNA copy number, PGC-1α, NRF1 and also TFAM, indicating an inhibition of mitochondrial biogenesis triggered by SiNPs via PGC-1α-NRF1-TFAM signaling. Overall, SiNPs triggered endothelial toxicity through mitochondria as target, including the induction of mitochondrial dysfunction, as well as the perturbations of their dynamics and biogenesis.
Afficher plus [+] Moins [-]Endoplasmic reticulum stress mediates 4,5-dichloro-2-n-octyl-4-isothiazolin-3-one (DCOIT)-induced toxicity and liver lipid metabolism changes in Nile tilapia (Oreochromis niloticus)
2018
Su, Yujie | Li, Huifeng | Xu, Chang | Wang, Xiaodan | Xie, Jia | Qin, Jian G. | Chen, Liqiao | Li, Erchao
DCOIT (4,5-dichloro-2-n-octyl-4-isothiazolin-3-one) is the main active ingredient in an emerging water environment antifoulant, the toxicity and environmental impacts of which need to be further investigated. Thus, this study examined the toxicity of DCOIT on Nile tilapia (Oreochromis niloticus), including its effects on behavior, respiration and energy metabolism as well as the role of endoplasmic reticulum stress (ER stress) in mediating its toxicity and metabolic changes. The changes in fish behavior, respiration, neuronal signal transmission, energy metabolism, ER stress, and liver histology were examined via acute (4 days) and chronic (28 days) exposures to 0, 3, 15, 30 μg/L DCOIT in vivo. Additionally, ER stress levels were measured in 24-h periods of hepatocyte exposure to 0, 3, 15, 30 and 300 μg/L DCOIT in vitro. The hyper-locomotor activities decreased, but the respiration rate increased after a 4-day acute exposure period, indicating that DCOIT exposure altered fish energy metabolism. After acute exposure at a low DCOIT concentration, the activation of ER stress induced triglyceride accumulation in the liver. After chronic exposure for 28 days, the prolonged ER stress induced a series of pathological cellular changes. At the cellular level, exposure to a high DCOIT concentration induced ER stress in the hepatocytes. In addition, as a neurotoxin, DCOIT has the potential to disrupt the neurotransmission of the cholinergic system, resulting in motor behavior disruption. This study demonstrates that DCOIT plays a role in time- and concentration-dependent toxicity and that changes in lipid metabolism are directly related to endoplasmic reticulum function after exposure to an antifouling agent. This work advances the understanding of the toxic mechanism of DCOIT, which is necessary for its evaluation.
Afficher plus [+] Moins [-]Distribution patterns of organic pollutants and microbial processes in marine sediments across a gradient of anthropogenic impact
2018
Zoppini, A. | Ademollo, N. | Patrolecco, L. | Langone, L. | Lungarini, S. | Dellisanti, W. | Amalfitano, S.
Marine sediments are part of the hydrological cycle and the ultimate storage compartment of land-derived organic matter, including pollutants. Since relevant microbially-driven processes occurring at benthic level may affect the quality of the overall aquatic system, the necessity for incorporating information about microbial communities functioning for ecosystem modelling is arising. The aim of this field study was to explore the links occurring between sediment contamination patterns by three selected class of organic pollutants (Polycyclic Aromatic Hydrocarbons, PAHs, Nonylphenols, NPs, Bisphenol A, BPA) and major microbial properties (Prokaryotic Biomass, PB; total living biomass, C-ATP; Prokaryotic C Production rate, PCP; Community Respiration rate, CR) across a gradient of anthropogenic pollution. Sediments were sampled from 34 sites selected along 700 km of the western coastline of the Adriatic Sea. Organic contamination was moderate (PAHs <830 ng g⁻¹; NPs <350 ng g⁻¹; BPA <38 ng g⁻¹) and decreased southward. The amount of PAHs-associated carbon (C-PAHs) increased significantly with sediment organic carbon (OC), along with microbial functional rates. The negative relation between PCP/CR ratio and OC indicated the shift toward oxidative processes in response to organic pollution and potential toxicity, estimated as Toxic Equivalents (TEQs). Our outcomes showed that sediment organic contamination and benthic microbial processes can be intimately linked, with potential repercussions on CO₂ emission rates and C-cycling within the detritus-based trophic web.
Afficher plus [+] Moins [-]Effects of chronic elevated ozone exposure on gas exchange responses of adult beech trees (Fagus sylvatica) as related to the within-canopy light gradient
2009
Kitao, Mitsutoshi | Löw, Markus | Heerdt, Christian | Grams, Thorsten E.E. | Haberle, Karl-Heinz | Matyssek, Rainer
The effects of elevated O3 on photosynthetic properties in adult beech trees (Fagus sylvatica) were investigated in relation to leaf mass per area as a measure of the gradually changing, within-canopy light availability. Leaves under elevated O3 showed decreased stomatal conductance at unchanged carboxylation capacity of Rubisco, which was consistent with enhanced δ13C of leaf organic matter, regardless of the light environment during growth. In parallel, increased energy demand for O3 detoxification and repair was suggested under elevated O3 owing to enhanced dark respiration. Only in shade-grown leaves, light-limited photosynthesis was reduced under elevated O3, this effect being accompanied by lowered Fv/Fm. These results suggest that chronic O3 exposure primarily caused stomatal closure to adult beech trees in the field regardless of the within-canopy light gradient. However, light limitation apparently raised the O3 sensitivity of photosynthesis and accelerated senescence in shade leaves.
Afficher plus [+] Moins [-]