Affiner votre recherche
Résultats 1-10 de 59
Visible light driven exotic p (CuO) - n (TiO2) heterojunction for the photodegradation of 4-chlorophenol and antibacterial activity
2021
Gnanasekaran, Lalitha | Pachaiappan, Rekha | Kumar, P Senthil | Hoang, Tuan K.A. | Rajendran, Saravanan | Durgalakshmi, D. | Soto-Moscoso, Matias | Cornejo-Ponce, Lorena | Gracia, F.
The treatment of industrial waste and harmful bacteria is an important topic due to the release of toxins from the industrial pollutants that damage the water resources. These harmful sources frighten the life of every organism which was later developed as the carcinogenic and mutagenic agents. Therefore, the current study focuses on the breakdown or degradation of 4-chlorophenol and the antibacterial activity against Escherichia coli (E. coli). As a well-known catalyst, pure titanium-di-oxide (TiO₂) had not shown the photocatalytic activity in the visible light region. Hence, band position of TiO₂ need to be shifted to bring out the absorption in the visible light region. For this purpose, the n-type TiO₂ nanocrystalline material's band gap got varied by adding different ratios of p-type CuO. The result had appeared in the formation of p (CuO) – n (TiO₂) junction synthesized from sol-gel followed by chemical precipitation methods. The optical band gap value was determined by Kubelka-Munk (K-M) plot through UV–Vis diffusive reflectance spectroscopy (DRS). Further, the comprehensive mechanism and the results of photocatalytic and antibacterial activities were discussed in detail. These investigations are made for tuning the TiO₂ catalyst towards improving or eliminating the existing various environmental damages.
Afficher plus [+] Moins [-]Remediation of artificially contaminated soil and groundwater with copper using hydroxyapatite/calcium silicate hydrate recovered from phosphorus-rich wastewater
2021
Liu, Yiyang | Zhang, Rongbin | Sun, Zhenjie | Shen, Qin | Li, Yuan | Wang, Yuan | Xia, Siqing | Zhao, Jianfu | Wang, Xuejiang
Excessive copper (Cu) in contaminated soil and groundwater has attracted continuous attentions due to the bioaccumulation and durability. In this study, the feasibility of remediation of heavy metal pollution in soil and groundwater was investigated using hydroxyapatite/calcium silicate hydrate (HAP/C–S–H) recovered from phosphorus-rich wastewater in farmland. The results show that the pH has a strong effect on copper removal from Cu-contaminated groundwater but the impact of ion strength on the removal is weak. In general, high pH and low ion strength give better results in copper removal. Kinetic and isotherm data from the study fit well with Pseudo-second-order kinetic model and Langmuir isotherm model, respectively. The maximum adsorption capacity of HAP/C–S–H (138 mg/g) was higher than that of C–S–H (90.3 mg/g) when pH value, temperature, and ionic strength were 5, 308 K, and 0.01 M, respectively. Thermodynamics results indicate that Cu removal is a spontaneous and endothermic process. X-ray diffraction (XRD) results show that the mechanism of copper removal involves physical adsorption, chemical precipitation and ion exchange. For the remediation of Cu-contaminated soil, 76.3% of leachable copper was immobilized by HAP/C–S–H after 28 d. Acid soluble Cu, the main contributor to biotoxicity, decreased significantly while reducible and residual Cu increased. After immobilization, the acid neutralization capacity of the soil increased and the dissolution of copper was substantially reduced in near-neutral pH. It can be concluded that HAP/C–S–H is an effective, low-cost and eco-friendly reagent for in-situ remediation of heavy metal polluted soil and groundwater.
Afficher plus [+] Moins [-]Fe(II) enhances simultaneous phosphorus removal and denitrification in heterotrophic denitrification by chemical precipitation and stimulating denitrifiers activity
2021
Ma, Hang | Gao, Xinlei | Chen, Yihua | Zhu, Jiaxin | Liu, Tongzhou
Using Fe(II) salt as the precipitant in heterotrophic denitrification achieves improved TP removal, and enhancement in denitrification was often observed. This study aimed to obtain a better understanding of Fe(II)-enhanced denitrification with sufficient carbon source supply. Laboratory-scale experiments were conducted in SBRs with or without Fe(II) addition. Remarkably improved TP removal was experienced. TP removal efficiency in Fe(II) adding reactor was 85.8 ± 3.4%; whereas, that in the reactor without Fe(II) addition was 31.1 ± 2.8%. Besides improved TP removal, better TN removal efficiency (94.1 ± 1.1%) were recorded when Fe(II) was added, and that in the reactor without Fe(II) addition was 89 ± 0.8%. The specific denitrification rate were observed increase by 12.6% when Fe(II) was added. Further microbial analyses revealed increases in the abundances of typical denitrifiers (i.e. Niastella, Opitutus, Dechloromonas, Ignavibacterium, Anaeromyxobacter, Pedosphaera, and Myxococcus). Their associated denitrifying genes, narG, nirS, norB, and nosZ, were observed had 14.2%, 19.4%, 21.6%, and 9.9% elevation, respectively. Such enhancement in denitrification shall not be due to nitrate-dependent ferrous oxidation, which prevails in organic-deficient environments. In an environment with a continuous supply of Fe(II) and plenty of carbon sources, a cycle of denitrifying enzyme activity enhancement in the presence of Fe(II) facilitating nitrogen substrate utilization, stimulating denitrifier metabolism and growth, elevating denitrifying genes abundance, and increasing denitrifying enzymes expression were thought to be responsible for the Fe(II)-enhanced heterotrophic denitrification. Fe(II) salt is often a less expensive precipitant and has recently become attractive for TP removal in wastewater. The findings of this study solidify previous observation of enhancement of both TP and TN removal by adding Fe(II) in denitrification, and would be helpful for developing cost-effective pollutant removal processes.
Afficher plus [+] Moins [-]Ni adsorption and Ni–Al LDH precipitation in a sandy aquifer: An experimental and mechanistic modeling study
2011
Mining activities and industries have created nickel (Ni) contaminations in many parts of the world. The objective of this study is to increase our understanding of Ni adsorption and Nickel–Aluminium Layered Double Hydroxide (Ni–Al LDH) precipitation to reduce Ni mobility in a sandy soil aquifer. At pH ≥7.2 both adsorption and Ni–Al LDH precipitation occurred. In batch experiments with the sandy soil up to 70% of oxalate-extractable Al was taken up in LDH formation during 56 days. In a long term column experiment 99% of influent Ni was retained at pH 7.5 due to Ni adsorption (≈34%) and Ni–Al LDH precipitation (≈66%) based on mechanistic reactive transport modeling. The subsequent leaching at pH 6.5 could be largely attributed to desorption. Our results show that even in sandy aquifers with relatively low Al content, Ni–Al LDH precipitation is a promising mechanism to immobilize Ni.
Afficher plus [+] Moins [-]Immobilization of lead and cadmium from aqueous solution and contaminated sediment using nano-hydroxyapatite
2010
Zhang, Zizhong | Li, Mengyan | Chen, Wei | Zhu, Shuzhen | Liu, Nannan | Zhu, Lingyan
The effectiveness and mechanism of nano-hydroxyapatite particles (nHAp) in immobilizing Pb and Cd from aqueous solutions and contaminated sediment were investigated. The maximum sorption amount (Qmax) of Pb and Cd in aqueous solution was 1.17 and 0.57 mmol/g. The X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS) surface and depth analysis indicated that dissolution-precipitation is the primary immobilization mechanism for Pb, while surface complexation and intraparticle diffusion account for Cd sequestration. Different amounts of nHAp (0–10% nHAp/dry weight) were added to the contaminated sediment. Sequential extraction showed that nHAp could effectively reduce the exchangeable fraction of Pb and Cd in the sediment and significantly reduce the concentration in porewater. The results in this study showed that nHAp can immobilize Pb and Cd in sediment effectively. Nano-hydroxyapatite shows potential and advantages to immobilize lead and cadmium in aqueous solution and sediment.
Afficher plus [+] Moins [-]Chemical composition and seasonal variation of acid deposition in Guangzhou, South China: Comparison with precipitation in other major Chinese cities
2009
Huang, De-Yin | Xu, Yi-Gang | Peng, Ping'an | Zhang, Hui-Huang | Lan, Jiang-Bo
With the aim of understanding the origin of acid rains in South China, we analyzed rainwaters collected from Guangzhou, China, between March 2005 and February 2006. The pH of rainwater collected during the monitoring period varied from 4.22 to 5.87; acid rain represented about 94% of total precipitation during this period. The rainwater was characterized by high concentrations of SO42-, NO3-, Ca2+, and NH4+. SO42- and NO3-, the main precursors of acid rain, were related to the combustion of coal and fertilizer use/traffic emissions, respectively. Ca2+ and NH4+ act as neutralizers of acid, accounting for the decoupling between high SO42- concentrations and relatively high pH in the Guangzhou precipitation. The acid rain in Guangzhou is most pronounced during spring and summer. A comparison with acid precipitation in other Chinese cities reveals a decreasing neutralization capacity from north to south, probably related to the role and origin of alkaline bases in precipitation. A north-to-south decreasing trend in the neutralization capacity of precipitation in China.
Afficher plus [+] Moins [-]Nitrogen and Phosphorus Recovery from Wastewater
2015
Sengupta, Sukalyan | Nawaz, Tabish | Beaudry, Jeffrey
Use of nitrogen- and phosphorus-based synthetic fertilizers shows an increasing trend, but this has led to large-scale influx of reactive nitrogen in the environment, with serious implications on human health and the environment. On the other hand, phosphorus, a non-renewable resource, faces a serious risk of depletion. Therefore, recovery and reuse of nitrogen and phosphorus is highly desirable. For nitrogen recovery, an ion exchange/adsorption-based process provides concentrated streams of reactive nitrogen. Bioelectrochemical systems efficiently and effectively recover nitrogen as NH₃ (g) or (NH₄)₂SO₄. Air stripping of ammonia from anaerobic digestate has been reported to recover 70–92 % of nitrogen. Membrane separation provides recovery in the order of 99–100 % with no secondary pollutant in the permeate.With regard to phosphorus (P) removal, physical filtration and membrane processes have the potential to reduce suspended P to trace amounts but provide minimal dissolved P removal. Chemical precipitation can remove 80–99 % P in wastewater streams and recover it in the form of fertilizer (struvite). Acid hydrolysis can convert recovered P into usable phosphoric acid and phosphate fertilizers. Physical-chemical adsorption and ion exchange media can reduce P to trace or non-detect concentrations, with minimal waste production and high reusability. Biological assimilation through constructed wetlands removes both N (83–87 %) and P (70–85 %) from wastewaters, with recovery in the form of fish/animal feeds and biofuel. The paper discusses methods and important results on recovery of nitrogen and phosphorus from wastewater.
Afficher plus [+] Moins [-]Phosphorus removal and recovery: state of the science and challenges
2022
Zahed, Mohammad Ali | Salehi, Samira | Tabari, Yasaman | Farraji, Hossein | Ataei-Kachooei, Saba | Zinatizadeh, Ali Akbar | Kamali, Nima | Mahjouri, Mohammad
Phosphorus is one of the main nutrients required for all life. Phosphorus as phosphate form plays an important role in different cellular processes. Entrance of phosphorus in the environment leads to serious ecological problems including water quality problems and soil pollution. Furthermore, it may cause eutrophication as well as harmful algae blooms (HABs) in aquatic environments. Several physical, chemical, and biological methods have been presented for phosphorus removal and recovery. In this review, there is an overview of phosphorus role in nature provided, available removal processes are discussed, and each of them is explained in detail. Chemical precipitation, ion exchange, membrane separation, and adsorption can be listed as the most used methods. Identifying advantages of these technologies will allow the performance of phosphorus removal systems to be updated, optimized, evaluate the treatment cost and benefits, and support select directions for further action. Two main applications of biochar and nanoscale materials are recommended.
Afficher plus [+] Moins [-]Photocatalysis for arsenic removal from water: considerations for solar photocatalytic reactors
2022
Silerio-Vázquez, Felipe | Proal Nájera, José B. | Bundschuh, Jochen | Alarcon-Herrera, María T.
The following work provides a perspective on the potential application of solar heterogeneous photocatalysis, which is a nonselective advanced oxidation process considered as a sustainable technology, to assist in arsenic removal from water, which is a global threat to human health. Heterogeneous photocatalysis can oxidize trivalent arsenic to pentavalent arsenic, decreasing its toxicity and easing its removal with other technologies, such as chemical precipitation and adsorption. Several lab-scale arsenic photocatalytic oxidation and diverse solar heterogeneous photocatalytic operations carried out in different reactor designs are analyzed. It was found out that this technology has not been translated to operational pilot plant scale prototypes. General research on reactors is scarce, comprising a small percentage of the photocatalysis related scientific literature. It was possible to elucidate some operational parameters that a reactor must comply to operate efficiently. Reports on small-scale application shed light that in areas where other water purification technologies are economically and/or technically not suitable, and the solar energy is available, shed light on the fact that solar heterogeneous photocatalysis is highly promissory within a water purification process for removal of arsenic from water.
Afficher plus [+] Moins [-]Removal of methyl orange using combined ZnO/Fe2O3/ZnO-Zn composite coated to the aluminium foil in the presence of simulated solar radiation
2022
Banić, Nemanja D. | Krstić, Jugoslav B. | Uzelac, Maria M.
In this paper, the optimal preparative conditions (current density, deposition temperature, calcination temperature) for the original electrochemical synthesis of ZnO-Zn coating on aluminum foil support (ZnAF) were examined and determined the application for the removal of methyl orange (MO). Optimal application conditions for removing MO (volume and concentration of a treated solution) were also determined. In the following, four immobilized ZnO/Fe₂O₃ photocatalysts with different molar ratios of Zn to Fe (0.42, 0.84, 1.68, and 3.36) were synthesized via the chemical precipitation method on optimized electrochemically synthesized ZnAF support. Characterization studies of synthesized materials included SEM–EDS and Raman scattering analyses. The efficiency of these catalysts for MO removal in the presence/absence of simulated solar radiation (SSR) was investigated. The adsorption isotherms were investigated, and the results show that the adsorption data were best fitted with the Freundlich adsorption isotherm model. Assessment of the thermodynamic parameters showed that although the adsorption process was weakly endothermic over the range of temperatures studied, the relatively high entropy change gave an overall negative change in Gibbs free energy making the processes spontaneous. In the presence of SSR, the optimal molar ratio of Zn to Fe was determined to be 1.68. The possibility of potential reusing the catalyst was examined six times in a row. The possibility for multiple uses of suspension, which is used for immobilization, was also examined. It was also determined that the application of the 1.68Zn/Fe/ZnAF/H₂O₂/SSR system after the dye removal generates hydrogen at a rate of 186.5 μmol g⁻¹ after 6 h. Furthermore, in the presence of SSR and using a suspended form of catalyst, the removal efficiency was 1.6 times higher than the efficiency achieved with immobilized ZnO/Fe₂O₃ catalyst. Using the HPLC method for 1.68Zn/Fe/ZnAF/SSR system, five primary intermediates were found to be formed. The applicability of ZnO/Fe₂O₃/ZnAF for removal of other dyes was also examined.
Afficher plus [+] Moins [-]