Affiner votre recherche
Résultats 1-10 de 54
Artificial illumination near rivers may alter bat-insect trophic interactions
2019
Russo, Danilo | Cosentino, Francesca | Festa, Francesca | De Benedetta, Flavia | Pejic, Branka | Cerretti, Pierfilippo | Ancillotto, Leonardo
Artificial illumination at night represents an increasingly concerning threat to ecosystems worldwide, altering persistence, behaviour, physiology and fitness of many organisms and their mutual interactions, in the long-term affecting ecosystem functioning. Bats are very sensitive to artificial light at night because they are obligate nocturnal and feed on insects which are often also responsive to lights. Here we tested the effects of LED lighting on prey-predator interactions at riverine ecosystems, using bats and their insect prey as models, and compared bat and insect reactions in terms of bat activity and prey insect abundance and diversity, respectively, on artificially lit vs. unlit nights. Artificial light influenced both insect and bat assemblages in taxon-specific directions: insect abundances increased at lit sites, particularly due to an increase in small dipterans near the light source. Composition of insect assemblages also differed significantly between lit and unlit sites. Total bat activity declined at lit sites, but this change was mainly due to the response of the most abundant species, Myotis daubentonii, while opportunistic species showed no reaction or even an opposite pattern (Pipistrellus kuhlii). We show that artificial lighting along rivers may affect trophic interactions between bats and insects, resulting in a profound alteration of community structure and dynamics.
Afficher plus [+] Moins [-]The response of chironomid taxonomy- and functional trait-based metrics to fish farm effluent pollution in lotic systems
2018
Milošević, Djuradj | Stojanović, Katarina | Djurdjević, Aca | Marković, Zoran | Stojković Piperac, Milica | Živić, Miroslav | Živić, Ivana
The lotic habitats affected by trout farm waste are colonized with a particular invertebrate community of which chironomids are the most abundant group. However, there is little information available regarding how chironomid community structures respond to this type of pollution at the highest taxonomic resolution. Eight fish farms, together with their lotic systems as recipients, were used to test the variability of the chironomid community and its surrogates (taxonomic and functional metrics) across spatially arranged sampling sites to form a gradual decrease in the trout farm influence. The self organizing map (SOM) classified six different types of chironomid communities which were characteristic for both the control and affected habitats. The species indicator analyses listed 32 taxa as positive indicators of water pollution. The SOM and Kruskal-Wallis test revealed that the pattern of chironomid community structure obtained was mainly driven by six environmental parameters (Altitude, conductivity, distance from the outlet, hardness, HN₄-N, NO₃-N). Categorical principal components analysis (CATPCA) derived three models for each type of biotic metric, in which for diversity-, taxonomy- and functional feeding group-based metrics, the first two dimensions explained 55.2%, 58.3% and 55.4%, of the total variance respectively for 315 sampling sites. According to this analysis, the total number of taxa (S), abundance and the Shannon-Wiener index (H′) (as a diversity metric), as well as the proportion of Tanypodinae (as taxonomic group) and grazers/scraper (GRA) and gatherer collector (GAT)(as FFG metrics), were related to the outlet distance gradient, thus showing great potential to be used in the multimetric approach in bioassessment.
Afficher plus [+] Moins [-]Pollutant exposure at wastewater treatment works affects the detoxification organs of an urban adapter, the Banana Bat
2016
Naidoo, Samantha | Vosloo, Dalene | Schoeman, M Corrie
The Banana Bat, Neoromicia nana, exploits pollution-tolerant chironomids at wastewater treatment works (WWTWs). We investigated how pollutant exposure impacts the detoxification organs, namely the liver and kidney of N. nana. (i) We performed SEM-EDS to quantify metal content and mineral nutrients, and found significant differences in essential metal (Fe and Zn) content in the liver, and significant differences in Cu and one mineral nutrient (K) in the kidneys. (ii) We performed histological analysis and found more histopathological lesions in detoxification organs of WWTW bats. (iii) We calculated hepatosomatic/renalsomatic indices (HSI/RSI) to investigate whole organ effects, and found significant increases in organ size at WWTWs. (iv) We quantified metallothionein 1E (MT1E), using Western Blot immunodetection. Contrary to predictions, we found no significant upregulation of MT1E in bats at WWTWs. Ultimately, N. nana exploiting WWTWs may suffer chronic health problems from sub-lethal damage to organs responsible for detoxifying pollutants.
Afficher plus [+] Moins [-]Ecotoxicological effect characterisation of widely used organic UV filters
2012
Kaiser, D. | Sieratowicz, A. | Zielke, H. | Oetken, M. | Hollert, H. | Oehlmann, J.
Chemical UV filters are used in sun protection and personal care products in order to protect consumers from skin cancer induced by ultraviolet (UV) radiation. The present study aims to evaluate the effects of three common UV filters butyl-methoxydibenzoylmethane (B-MDM) ethylhexyl-methoxycinnamate (EHMC) and octocrylene (OCR) on aquatic organism, focussing particularly on infaunal and epibentic invertebrates (Chironomus riparius, Lumbriculus variegatus, Melanoides tuberculata and Potamopyrgus antipodarum). Due to their life habits, these organism are especially affected by lipophilic substances. Additionally, two direct sediment contact assays utilising zebra fish (Danio rerio) embryos and bacteria (Arthrobacter globiformis) were conducted. EHMC caused a toxic effect on reproduction in both snails with lowest observed effect concentrations (LOEC) of 0.4 mg/kg (Potamopyrgus antipodarum) and 10 mg/kg (Melanoides tuberculata). At high concentrations sublethal effects could be observed for D. rerio after exposure to EHMC (NOEC 100 mg/kg). B-MDM and OCR showed no effects on any of the tested organism.
Afficher plus [+] Moins [-]Trophic dynamics of selenium in a boreal lake food web
2021
Graves, Stephanie D. | Liber, K. (Karsten) | Palace, Vince | Hecker, Markus | Doig, Lorne E. | Janz, David M.
Selenium (Se) is both an essential micronutrient and a contaminant of concern that is of particular interest in mining-influenced waterbodies in Canada. The objective of this research was to characterize the trophic dynamics of selenium along a gradient of exposure concentrations in a Canadian boreal lake ecosystem. From June 20 to August 22, 2018, six limnocorrals (littoral, ∼3000 L enclosures) were spiked with mean measured concentrations of 0.4, 0.8, 1.6, 3.4, 5.6 and 7.9 μg Se/L as selenite, and three limnocorrals served as untreated controls (background aqueous Se = 0.08–0.09 μg/L). Total Se (TSe) concentrations in water, periphyton, phytoplankton, sediment, benthic macroinvertebrates, zooplankton and female finescale dace (Phoxinus neogaeus; added on day 21 of the experiment) were measured throughout and at the end of the experiment. Total Se bioaccumulation by organisms was generally non-linear. Greater uptake by phytoplankton than periphyton was observed. Taxonomic differences in accumulation of TSe by invertebrates (Heptageniidae = Chironomidae > zooplankton) were observed as well. Fish muscle and ovary tissue TSe bioaccumulation was more variable than that at lower trophic levels and uptake patterns indicated that fish did not reach steady state concentrations. This research provides field-derived models for the uptake of Se by algae and invertebrates, and contributes to a better understanding of the dynamics of TSe bioaccumulation over a gradient of exposure concentrations in cold-water lentic systems.
Afficher plus [+] Moins [-]Responses of benthic macroinvertebrate communities to a Bti-based insecticide in artificial microcosm streams
2021
Bordalo, Maria D. | Machado, Ana L. | Campos, Diana | Coelho, Sónia D. | Rodrigues, Andreia C.M. | Lopes, Isabel | Pestana, João L.T.
Bioinsecticides based on the bacterium Bacillus thuringiensis subsp. israelensis (Bti) are increasingly being applied directly into aquatic compartments to control nuisance mosquitoes and blackflies and are generally considered environmentally friendly alternatives to synthetic insecticides. Bti-based insecticides are considered highly selective, being Diptera-specific, and supposedly decompose rapidly in the environment. Nevertheless, their safety to non-target species and freshwater ecosystems has been questioned by recent studies, which in fact document possible indirect effects in aquatic food webs such as the decrease of prey availability to predators. This work aimed to evaluate the potential effects of a Bti-based insecticide (VectoBac® 12AS) on a freshwater macroinvertebrate community and on stream ecological functions by using artificial microcosm streams. Artificial microcosm streams were colonized with a macroinvertebrate community plus periphyton collected in a stream together with Alnus glutinosa leaf packs. They were exposed for 7 days to different Bti treatments (0, 12, 120, 1200 μg/L), which are within the recommended concentrations of application in aquatic compartments for blackfly and mosquito control. Besides invertebrate community structure and abundance, effects were evaluated regarding leaf decomposition and primary production as measures of ecosystem functioning. Community structure was significantly altered in all Bti treatments after 7 days of exposure, mostly due to a decline in chironomids, followed by oligochaetes, which both belong to the deposit-feeders’ functional group. Direct effects on oligochaetes are surprising and require further research. Also, reductions of leaf decomposition due to Bti-induced sublethal effects on shredders (reduced feeding) or mortality of chironomids (that can also feed on coarse organic matter) observed in our study, represent potential indirect effects of Bti in aquatic ecosystems. Our short-exposure experiment evidenced some negative effects on stream benthic invertebrate communities and on ecosystem functioning that must be considered whenever Bti is used in water bodies for blackfly or mosquito control programs.
Afficher plus [+] Moins [-]Chironomidae larvae: A neglected enricher of antibiotic resistance genes in the food chain of freshwater environments
2021
Ding, Chengshi | Ma, Jing | Jiang, Wanxiang | Zhao, Hanyu | Shi, Mengmeng | Cui, Guoqing | Yan, Tongdi | Wang, Qi | Li, Junwen | Qiu, Zhigang
Infection caused by pathogenic bacteria carrying antibiotic resistance genes (ARGs) is a serious challenge to human health. Water environment, including water and surface sediments, is an important repository of ARGs, and the activity of aquatic animal can affect the development of ARG pollution in the water environment. Macrobenthic invertebrates are an important component of aquatic ecosystems, and their effects on ARG development in aquatic environments remain unreported. The distribution of ARGs, including tetA gene, sul2 gene, and kan gene, in Chironomidae larvae is demonstrated in this study for the first time. The ARG distribution was related to sampling points, metal elements, and seasons. Animal models demonstrated that Chironomidae larvae enriched ARGs from water and passed them on to downstream predators in the food chain. Conjugative transfer mediated by resistant plasmids was crucial in the spread of ARG in Chironomidae larvae, and upregulated expression of trfAp gene and trbBp gene was the molecular mechanism. Escherichia in Proteobacteria and Flavobacterium in Bacteroidetes, which are gram-negative bacteria in Chironomidae larvae, are the primary host bacteria of ARGs confirmed via resistance screening and DNA sequencing of V4 region of 16S rRNA gene. Feeding experiments further confirmed that ARGs from Chironomidae larvae can be enriched in the fish gut. Research gaps in food chain between sediments and fish are addressed in this study, and Chironomidae larvae is an important enricher of ARGs in the freshwater environment.
Afficher plus [+] Moins [-]Spatial variation in the amino acid profile of four macroinvertebrate taxa along a highly polluted river
2021
Shakya, Manisha | Silvester, Ewen | Rees, Gavin | Stitz, Leigh | Holland, Aleicia
Acid mine drainage (AMD) is one of the major environmental problems impacting aquatic ecosystems globally. We studied changes in the community composition of macroinvertebrates and amino acid (AA) profiles of dominant taxa along an AMD contamination gradient within the Dee River, Queensland, Australia to understand how AMD can affect the biomolecular composition of macroinvertebrates. Taxa richness and community composition of macroinvertebrates changed widely along the AMD gradient with significantly lower taxa richness recorded at the polluted sites compared to upstream and downstream sites. The Dipteran families: Chironomidae and Ceratopogonidae, the Odonata family Gomphidae, and the Coleoptera family Dytiscidae were the only families found at all sampling sites and were used here for AA analysis. There were significant variations in the AA profiles among the studied taxa. The AA profile of each taxon also varied among upstream, polluted and downstream sites suggesting that contamination of a river system with acid mine drainage not only alters the overall macroinvertebrate community composition but also significantly influences the AA profile of organisms that are tolerant to AMD. This study highlights the potential of using AA profiling to study the response of aquatic organisms to contamination gradients such as those associated with AMD.
Afficher plus [+] Moins [-]Spatio-temporal impact of salinated mine water on Lake Jormasjärvi, Finland
2019
Leppänen, Jaakko Johannes | Luoto, Tomi P. | Weckström, Jan
The salinization of freshwater environments is a global concern, and one of the largest sources of salinated water is the mining industry. An increasing number of modern mines are working with low grade sulfide ores, resulting in increased volumes of potentially harmful saline drainage. We used water monitoring data, together with data on sedimentary fossil remains (cladoceran, diatom and chironomid), to analyze the spatio-temporal (5 sampling locations and 3 sediment depths) impact of salinated mine water originating from the Talvivaara/Terrafame open cast mine on multiple components of the aquatic ecosystem of Lake Jormasjärvi, Finland. Lake Jormasjärvi is the fourth and largest lake in a chain of lakes along the path of the mine water. Despite the location and large water volume, the mine water has changed the chemistry of Lake Jormasjärvi, reflected in increased electrical conductivity values since 2010. The ecological impact is significant around the inflow region of the lake, as all biological indicator groups show a rapid and directional shift towards new species composition. There is a clear trend in improved water quality as one moves further from the point of inflow, and as one looks back in time. Our results show that salinated mine water may induce rapid and large scale changes, even far downstream along a chain of several sinking basins. This is of special importance in cases where large amounts of waste water are processed in the vicinity of protected habitats.
Afficher plus [+] Moins [-]Comparison of the behavioural effects of pharmaceuticals and pesticides on Diamesa zernyi larvae (Chironomidae)
2018
Villa, Sara | Di Nica, Valeria | Pescatore, Tanita | Bellamoli, Francesco | Miari, Francesco | Finizio, Antonio | Lencioni, Valeria
Several studies have indicated the presence of contaminants in Alpine aquatic ecosystems. Even if measured concentrations are far below those that cause acute effects, continuous exposure to sub-lethal concentrations may have detrimental effects on the aquatic species present in these remote environments. This may lead to a cascade of indirect effects at higher levels of the ecological hierarchy (i.e., the community). To improve the determination of ecologically relevant risk endpoints, behavioural alterations in organisms due to pollutants are increasingly studied in ecotoxicology. In fact, behaviour links physiological function with ecological processes, and can be very sensitive to environmental stimuli and chemical exposure. This is the first study on behavioural alteration in a wild population of an Alpine species. In the present study, a video tracking system was standardized and subsequently used to identify contaminant-induced behavioural alterations in Diamesa zernyi larvae (Diptera, Chironomidae). Diamesa zernyi larvae, collected in an Italian Alpine stream (Rio Presena, Trentino Region), were acclimated for 24 h and successively exposed to several aquatic contaminants (pesticides: chlorpyrifos, metolachlor, boscalid, captan; pharmaceuticals: ibuprofen, furosemide, trimethoprim) at concentrations corresponding to their Lowest Observed Effect Concentration (LOEC). After 24, 48, 72, and 96 h of exposure, changes in the distance moved, the average speed, and the frequency of body bends were taken to reflect contaminant- and time-dependent effects on larval behaviour. In general, metolachlor, captan, and trimethoprim tended to reduce all the endpoints under consideration, whereas chlorpyrifos, boscalid, ibuprofen, and furosemide seemed to increase the distances moved by the larvae. This could be related to the different mechanisms of action of the investigated chemicals. Independently of the contaminant, after 72 h a general slowing down of all the behavioural activities occurred. Finally, we propose a behavioural stress indicator to compare the overall behavioural effects induced by the various contaminants.
Afficher plus [+] Moins [-]