Affiner votre recherche
Résultats 1-10 de 159
Monitoring of Trihalomethanes and its Cancer Risk Assessment in Drinking Water of Delhi City, India Texte intégral
2022
Mazhar, Mohd. Aamir | Ahmed, Sirajuddin | Husain, Azhar | Uddin, Rahis
The current study determines the concentrations of trihalomethanes (THMs), and the cancer risk associated with them. The tap water sampling was done from the command area of nine water treatment plants (WTPs) of Delhi, India. THMs levels in the water samples from eighteen distribution points were investigated for one year. The cancer risk (CR) related to THMs by different exposure routes i.e., ingestion, dermal absorption, and inhalation, was assessed for males and females. The THM levels varied between 11.41 µg/L to 175.54 µg/L in the distribution system, having a mean level of 77.58 µg/L. The average concentrations of THMs exceeded the maximum permissible limit given by Indian Standards. The concentration of chloroform was maximum, followed by bromodichloromethane, dibromochloromethane, and bromoform. For males and females, the mean value of total CR was 5.09E-05 5.70E-05, respectively. As the THMs levels were high, the total CR value was also more than the negligible level of risk i.e., 1.0 x 10-6 through all exposure routes.
Afficher plus [+] Moins [-]Carcinogen Risk Assessment of Mutagen X in Chlorinated Drinking Water in West of Tehran, Using Probabilistic Approaches Texte intégral
2020
Bagheban, M. | Karyab, H. | Baghdadi, M. | Mohammadi, A. | Akbarpour, B. | Keshtkar, A.
The present study aims at evaluating the risk of Mutagen X (MX) (3-chloro-4-(dichloromethyl)-5-hydroxy-2 (5H)-furanone) and adverse health effects, associated with direct ingestion of chlorinated drinking water in west of Tehran, supplied by chlorinated drinking water from surface and underground water sources. For one year, MX concentrations in tap water samples has been measured for consumers in four different zones in western Tehran. It has been found that average MX concentration in the whole study area is 24.16 ng/L, with the highest concentration being in Zone 1 with a value of 38 ng/L. Also, the role of water sources, seasonal changes, and effective factors such as Total Organic Carbon (TOC) have been evaluated on MX formation. The highest of excess lifetime cancer risk (ELCR), estimated as 0.0037E-05, belongs to Zone 1, which uses surface water to supply drinking water, while the lowest can be seen in Zone 4, being 0.0021E-05. This latter zone utilizes underground water as the water source. In all zones, the highest risk of excessive cancer is related to winter, ranging from 0.0045E-5 in Zone 1 to 0.0023E-5 in Zone 4. The estimated number of cancer cases for Zones 1 to 4 have been 0.012, 0.016, 0.016, and 0.004, respectively, based on their population. The estimated average risk and the number of ELCR, caused by exposure to MX, through direct ingestion of drinking water have been 0.0030E-5 and 0.047, respectively, in the entire studied area for the duration of one year.
Afficher plus [+] Moins [-]Effect of silver nanoparticles and chlorine reaction time on the regulated and emerging disinfection by-products formation Texte intégral
2022
Na-Phatthalung, Warangkana | Keaonaborn, Dararat | Jaichuedee, Juthamas | Keawchouy, Suthiwan | Sinyoung, Suthatip | Musikavong, Charongpun
Silver nanoparticles (AgNPs) are used in many industries for multiple applications that inevitably release AgNPs into surface water sources. The formation kinetics of disinfection by-products (DBPs) in the presence of AgNPs was investigated during chlorination. Experiments were carried out with raw water from a canal in Songkhla, Thailand, which analyzed the formation potential (FP) of trihalomethanes FP (THMFP), iodo-trihalomethanes FP (I-THMFP), haloacetonitriles FP (HANFP), and trichloronitromethane FP. Increased AgNP concentrations by 10–20 mg/L led to a higher specific formation rate of chloroform which is described by zero- and first-order kinetics. The increase in the specific formation of chloroform as increasing chlorine contact time could enhance both the THMFP rates and the maximum THMFP concentrations in all tested AgNPs. The AgNP content did not have a significant influence on I-THMFP and HANFP concentrations or speciation. The I-THMFP and HANFP increased in a short-chlorination time as mostly complete formation <12 h, and then the rate decreased as the reaction proceeded. The levels of THMs and many emerging DBPs are related to the presence of AgNPs in chlorinated water and chlorine reaction time. THMFP had a higher impact on integrated toxic risk value (ITRV) than I-THMFP and HANFP because of the chlorination of water with AgNPs. The chlorine reaction time was more effective for increasing the ITRV of THMFP than the level of AgNPs. Water treatment plants should control the DBPs that cause possible health risks from water consumption by optimizing water distribution time.
Afficher plus [+] Moins [-]Occurrence of chlorinated and brominated polycyclic aromatic hydrocarbons from electric arc furnace for steelmaking Texte intégral
2022
Yang, Lili | Shen, Jia | Zheng, Minghui | Yang, Qiuting | Li, Da | Liu, Guorui
Chlorinated and brominated polycyclic aromatic hydrocarbons (Cl/Br-PAHs) are persistent organic pollutants with potential carcinogenic toxicities that are even higher than those of their parent PAH congeners. Current knowledge of Cl/Br-PAH sources and emission characteristics is lacking. Electric arc furnace (EAF) steelmaking is a potential source for Cl/Br-PAHs, considering that preheating of raw materials before they enter the EAF could produce suitable conditions for Cl/Br-PAHs formation. In this field study, we identified EAFs as an important source of Cl/Br-PAHs and clarified their emission concentrations, fingerprints by gas chromatography coupled with high-resolution magnetic mass spectrometry. Potential formation mechanisms of Cl/Br-PAHs were also proposed. The mass concentration ranges for Σ₁₈Cl-PAHs and Σ₁₈Br-PAHs in stack gas were 25.85–4191 ng Nm⁻³ and 1.02–341 ng Nm⁻³, respectively. The variation of concentration indicated that the steel scrap composition greatly affected the production of Cl/Br-PAHs. The congener ratios including 6-chlorobenzo [a]pyrene/3-chlorofluoranthene and 1-chloroanthracene/1-chloropyrene could be used to estimate the influence of industrial sources on Cl-PAH occurrences in the air. Ring structure growth was the dominant formation pathway for Cl/Br-PAHs, distinctly different from dioxin formation mechanisms dominated by precursor dimerization and chlorination.
Afficher plus [+] Moins [-]Occurrence, influencing factors, toxicity, regulations, and abatement approaches for disinfection by-products in chlorinated drinking water: A comprehensive review Texte intégral
2021
Kali, Sundas | K̲h̲ān, Marīnah | Ghaffar, Muhammad Sheraz | Rasheed, Sajida | Waseem, Amir | Iqbal, Muhammad Mazhar | Bilal khan Niazi, Muhammad | Zafar, Mazhar Iqbal
Disinfection is considered as a vital step to ensure the supply of clean and safe drinking water. Various approaches are adopted for this purpose; however, chlorination is highly preferred all over the world. This method is opted owing to its several advantages. However, it leads to the formation of certain by-products. These chlorination disinfection by-products (DBPs) are genotoxic, carcinogenic and mutagenic. Still chlorination is being practiced worldwide. Present review gives insights into the occurrence, toxicity and factors affecting the formation of regulated (THMs, HAAs) and emerging DBPs (N-DBPs, HKs, HAs and aromatic DBPs) found in drinking water. Furthermore, remediation techniques used to control DBPs have also been summarized here. Key findings are: (i) concentration of regulated DBPs surpassed the permissible limit in most of the regions, (ii) high chlorine dose, high NOM, more reaction time (up to 3 h) and high temperature (up to 30 °C) enhance the formation of THMs and HAAs, (iii) high pH favors the formation of THMs while low pH is suitable of the formation of HAAs, (iv) high NOM, low temperature, low chlorine dose and moderate pH favors the formation of unstable DBPs (N-DBPs, HKs and HAs), (v) DBPs are toxic not only for humans but for aquatic fauna as well, (vi) membrane technologies, enhanced coagulation and AOPs remove NOM, (vii) adsorption, air stripping and other physical and chemical methods are post-formation approaches (viii) step-wise chlorination is assumed to be an efficient method to reduce DBPs formation without any treatment. Toxicity data revealed that N-DBPs are found to be more toxic than C-DBPs and aromatic DBPs than aliphatic DBPs. In majority of the studies, merely THMs and HAAs have been studied and USEPA has regulated just these two groups. Future studies should focus on emerging DBPs and provide information regarding their regulation.
Afficher plus [+] Moins [-]Fatty liver and impaired hepatic metabolism alter the congener-specific distribution of polychlorinated biphenyls (PCBs) in mice with a liver-specific deletion of cytochrome P450 reductase Texte intégral
2020
Li, Xueshu | Zhang, Chunyun | Wang, Kai | Lehmler, Hans-Joachim
Polychlorinated biphenyls (PCBs) are persistent organic pollutants that are linked to adverse health outcomes. PCB tissue levels are determinants of PCB toxicity; however, it is unclear how factors, such as an altered metabolism and/or a fatty liver, affect PCB distribution in vivo. We determined the congener-specific disposition of PCBs in mice with a liver-specific deletion of cytochrome P450 reductase (KO), a model of fatty liver with impaired hepatic metabolism, and wild-type (WT) mice. Eight-week-old male WT (MWT, n = 3), male KO (MKO, n = 5), female WT (FWT, n = 4), and female KO mice (FKO, n = 4) were exposed orally to Aroclor 1254. PCBs were quantified in adipose, blood, brain, and liver tissues by gas chromatography-mass spectrometry. The ΣPCB levels followed the rank order adipose > liver ∼ brain > blood in WT and adipose ∼ liver > brain > blood in KO mice. PCB levels were much higher in the liver of KO than WT mice, irrespective of the sex. A comparison across exposure groups revealed minor genotype and sex-dependent differences in the PCB congener profiles (cos Θ > 0.92). Within each exposure group, tissue profiles showed small differences between tissues (cos Θ = 0.85 to 0.98). These differences were due to a decrease in metabolically more labile PCB congeners and an increase in congeners resistant to metabolism. The tissue-to-blood ratio of PCBs decreased for adipose, increased for the brain, and remained constant for the liver with an increase in chlorination. While these ratios did not follow the trends predicted using a composition-based model, the agreement between experimental and calculated partition coefficients was reasonable. Although the distribution of PCBs differs between KO and WT mice, the magnitude of the partitioning of PCBs from the blood into tissues can be approximated using composition-based models.
Afficher plus [+] Moins [-]Fungal biodegradation of the N-nitrosodimethylamine precursors venlafaxine and O-desmethylvenlafaxine in water Texte intégral
2019
Llorca, Marta | Castellet-Rovira, Francesc | Farré, María-José | Jaén-Gil, Adrián | Martínez-Alonso, Maira | Rodríguez-Mozaz, Sara | Sarrà, Montserrat | Barceló, Damià
Fungal biodegradation of the N-nitrosodimethylamine precursors venlafaxine and O-desmethylvenlafaxine in water Texte intégral
2019
Llorca, Marta | Castellet-Rovira, Francesc | Farré, María-José | Jaén-Gil, Adrián | Martínez-Alonso, Maira | Rodríguez-Mozaz, Sara | Sarrà, Montserrat | Barceló, Damià
Antidepressant drugs such as Venlafaxine (VFX) and O-desmethylvenlafaxine (ODMVFX) are emerging contaminants that are commonly detected in aquatic environments, since conventional wastewater treatment plants are unable to completely remove them. They can be precursors of hazardous by-products, such as the carcinogenic N-nitrosodimethylamine (NDMA), generated upon water chlorination, as they contain the dimethylamino moiety, necessary for the formation of NDMA. In this study, the capability of three white rot fungi (Trametes versicolor, Ganoderma lucidum and Pleurotus ostreatus) to remove both antidepressants from water and to decrease NDMA formation potential was investigated. Furthermore, transformation by-products (TPs) generated along the treatment process were elucidated and also correlated with their NDMA formation potential.Very promising results were obtained for T. versicolor and G. lucidum, both being able to remove up to 100% of ODMVFX. In the case of VFX, which is very recalcitrant to conventional wastewater treatment, a 70% of removal was achieved by T. versicolor, along with a reduction in NDMA formation potential, thus decreasing the associated problems for human health and the environment. However, the NDMA formation potential remained practically constant during treatment with G. lucidum despite of the equally high VFX removal (70%). This difference was attributed to the generation of different TPs during both fungal treatments. For example, G. lucidum generated more ODMVFX, which actually has a higher NDMA formation potential than the parent compound itself.
Afficher plus [+] Moins [-]Fungal biodegradation of the N-nitrosodimethylamine precursors venlafaxine and O-desmethylvenlafaxine in water Texte intégral
2019
Llorca, Marta | Castellet-Rovira, Francesc | Farré, María José | Jaén-Gil, Adrián | Martínez-Alonso, Maira Ramos | Rodríguez-Mozaz, Sara | Sarrà, Montserrat | Barceló, Damià | European Commission | Llorca, Marta [0000-0002-6065-2129] | Barceló, Damià [0000-0002-8873-0491] | Consejo Superior de Investigaciones Científicas [https://ror.org/02gfc7t72]
Antidepressant drugs such as Venlafaxine (VFX) and O-desmethylvenlafaxine (ODMVFX) are emerging contaminants that are commonly detected in aquatic environments, since conventional wastewater treatment plants are unable to completely remove them. They can be precursors of hazardous by-products, such as the carcinogenic N-nitrosodimethylamine (NDMA), generated upon water chlorination, as they contain the dimethylamino moiety, necessary for the formation of NDMA. In this study, the capability of three white rot fungi (Trametes versicolor, Ganoderma lucidum and Pleurotus ostreatus) to remove both antidepressants from water and to decrease NDMA formation potential was investigated. Furthermore, transformation by-products (TPs) generated along the treatment process were elucidated and also correlated with their NDMA formation potential. Very promising results were obtained for T. versicolor and G. lucidum, both being able to remove up to 100% of ODMVFX. In the case of VFX, which is very recalcitrant to conventional wastewater treatment, a 70% of removal was achieved by T. versicolor, along with a reduction in NDMA formation potential, thus decreasing the associated problems for human health and the environment. However, the NDMA formation potential remained practically constant during treatment with G. lucidum despite of the equally high VFX removal (70%). This difference was attributed to the generation of different TPs during both fungal treatments. For example, G. lucidum generated more ODMVFX, which actually has a higher NDMA formation potential than the parent compound itself. © 2018 Elsevier Ltd | This work was supported by the Spanish Ministry of Economy, Industry and Competitiveness (project CTQ2010-21776-C02 and CTM2013-48545-C2), co-financed by the European Union through the European Regional Development Fund (ERDF) and supported by the Generalitat de Catalunya (Consolidated Research Groups: Catalan Institute for water Research 2014 SGR 291 and 2014 SGR 476). The Department of Chemical, Biological and Environmental Engineering of the Autonomous University of Barcelona (UAB) is member of the Xarxa de Referència en Biotecnologia de la Generalitat de Catalunya. Castellet-Rovira, F. acknowledges a predoctoral grant from UAB. Dr. SRM acknowledges her Ramón y Cajal fellowship (RyC-2014-16707) and Dr. MJF acknowledges her Ramón y Cajal fellowship (RyC-2015-17108) from the Spanish Ministry of Economy, Industry and Competitiveness. Dr. MJF acknowledges the European Commission for funding project 623711 under the FP7-PEOPLE-2013-IIF - Marie Curie Action: “International Incoming Fellowships”. Adrián Jaén-Gil acknowledge their PhD scholarship from AGAUR (2017FI_B 00778). Pleurotus ostreatus (NCBI KJ020935) cultures were kindly provided by Laura Palli. | Peer reviewed
Afficher plus [+] Moins [-]Formation of environmentally relevant polyhalogenated carbazoles from chloroperoxidase-catalyzed halogenation of carbazole Texte intégral
2018
Chen, Yanqiu | Lin, Kunde | Chen, Da | Wang, Kun | Zhou, Wenxiu | Wu, Yan | Huang, Xinwen
Polyhalogenated carbazoles (PHCs) are a class of emerging organic contaminants that have received increasing concern due to their widespread distribution and dioxin-like toxicity. Although previous studies have suggested possible natural sources of PHCs in the environment, the formation pathways are poorly understood. Here we explored the production of PHCs from halogenation of carbazole in the presence of Br⁻ and/or Cl⁻ under the catalysis of chloroperoxidase (CPO) isolated from the marine fungus Caldariomyces fumago. Overall, a total of 25 congeners including mono-to tetra-substituted chlorinated, brominated, and mixed halogenated carbazoles (with substitution patterns of –BrCl, –BrCl2, –BrCl3, –Br2Cl, –Br2Cl2, and –Br3Cl) were produced from the reactions under various conditions. The PHC product profiles were apparently dependent on the halide concentrations. In the CPO-mediated chlorination of carbazole, 3-mono- and 3,6-dichlorocarbazoles predominated in the formation products. In addition to the less abundant mixed halogenated carbazoles (-Br2Cl), 1,3,6-tri- and 1,3,6,8-tetrabromocarbazoles were the dominant products in reactions containing both Br⁻ and Cl⁻. The CPO-catalyzed halogenation of carbazole could take place in pH 3–7, but the formation products were pH dependent. Results of this study suggest that CPO-catalyzed halogenation of carbazole may play an important role in the natural formation of PHCs.
Afficher plus [+] Moins [-]Viable but non-culturable E. coli induced by low level chlorination have higher persistence to antibiotics than their culturable counterparts Texte intégral
2017
Disinfectant used in drinking water treatment and distribution system can induce culturable bacteria, including various kinds of pathogenic bacteria, into viable but non-culturable (VBNC) state. The loss of cultural state, resuscitation and environmental persistence of VBNC bacteria will severely damage drinking water microbiological safety and thus pose a risk to public health. The manner in which chlorination treatment induced a VBNC state in Escherichia coli and the antibiotic persistence of VBNC bacteria was investigated. It was found that low dosage of chlorine (0.5 mg L−1) disinfection effectively reduced the culturability of E. coli and induced a VBNC state, after which metabolic activity was reduced and persistence to 9 typical antibiotics was enhanced. Furthermore, RT-qPCR results showed that stress resistance genes (rpoS, marA, ygfA, relE) and ARGs, especially efflux genes were up-regulated compared with culturable cells. The intracellular concentration was tested and found to be lower in VBNC cells than in actively growing E. coli, which suggested a higher efflux rate. The data presented indicate that VBNC E. coli are more persistent than culturable counterparts to a wide variety of antibiotics. VBNC E. coli constitute a potential source of contamination and should be considered during monitoring of drinking water networks.
Afficher plus [+] Moins [-]Abundance of antibiotics, antibiotic resistance genes and bacterial community composition in wastewater effluents from different Romanian hospitals Texte intégral
2017
Szekeres, Edina | Baricz, Andreea | Chiriac, Cecilia Maria | Farkas, Anca | Opris, Ocsana | Soran, Maria-Loredana | Andrei, Adrian-Stefan | Rudi, Knut | Balcázar, José Luis | Dragoș, Nicolae | Coman, Cristian
Antimicrobial resistance represents a growing and significant public health threat, which requires a global response to develop effective strategies and mitigate the emergence and spread of this phenomenon in clinical and environmental settings. We investigated, therefore, the occurrence and abundance of several antibiotics and antibiotic resistance genes (ARGs), as well as bacterial community composition in wastewater effluents from different hospitals located in the Cluj County, Romania. Antibiotic concentrations ranged between 3.67 and 53.05 μg L−1, and the most abundant antibiotic classes were β-lactams, glycopeptides, and trimethoprim. Among the ARGs detected, 14 genes confer resistance to β-lactams, aminoglycosides, chloramphenicol, macrolide-lincosamide-streptogramin B (MLSB) antibiotics, sulfonamides, and tetracyclines. Genes encoding quaternary ammonium resistance and a transposon-related element were also detected. The sulI and qacEΔ1 genes, which confer resistance to sulfonamides and quaternary ammonium, had the highest relative abundance with values ranging from 5.33 × 10−2 to 1.94 × 10−1 and 1.94 × 10−2 to 4.89 × 10−2 copies/16 rRNA gene copies, respectively. The dominant phyla detected in the hospital wastewater samples were Proteobacteria, Bacteroidetes, Firmicutes, and Actinobacteria. Among selected hospitals, one of them applied an activated sludge and chlorine disinfection process before releasing the effluent to the municipal collector. This conventional wastewater treatment showed moderate removal efficiency of the studied pollutants, with a 55–81% decrease in antibiotic concentrations, 1–3 order of magnitude lower relative abundance of ARGs, but with a slight increase of some potentially pathogenic bacteria. Given this, hospital wastewaters (raw or treated) may contribute to the spread of these emerging pollutants in the receiving environments. To the best of our knowledge, this study quantified for the first time the abundance of antibiotics and ARGs in wastewater effluents from different Romanian hospitals.
Afficher plus [+] Moins [-]