Affiner votre recherche
Résultats 1-10 de 246
The Effects of Exposing Solea senegalensis to Microbeads with and Without Pesticides Texte intégral
2023
Albendín García, María Gemma | Alarcón, Isabel | Coello Oviedo, María Dolores | Rodríguez Barroso, María del Rocío | Aranda Quirós, Vanessa | Arellano López, Juana María | Anatomía Patológica, Biología Celular, Histología, Historia de la Ciencia, Medicina Legal y Forense y Toxicología | Tecnologías del Medio Ambiente
Microplastics (MP) are contaminants able to cause adverse effects on organisms. MPs are capable to interact with other environmental contaminants, including pesticides, altering their toxicity. The objective of the study was to research the sublethal effects (enzymatic activity) of pesticides alone and in combination with MPs. Cholinesterase enzymes are used as biomarkers to determine and evaluate the effects produced in organisms after exposure to pollutants. This study showed the acetylcholinesterase (AChE) enzymatic activity in the tissue of Solea senegalensis exposed to two environmental pollutants, the insecticide chlorpyrifos (CPF) and antibacterial triclosan (TCS) with and without microplastics (MPs). Solea senegalensis was chosen because it is a species in high demand because of its high economic value in southern Europe, as well as the use of this species in ecotoxicology and its increasing use as sentinel species, which justify using it to assess biological effects of pollutants. Toxicity tests were performed in organisms exposed to concentrations of between 5 and 80 mu g/L CPF and 0.1 and 0.4 mg/L TCS for 96 h. In addition, each test incorporated MPs that were added at different concentrations in order to evaluate their role as a possible enhancer of the effects caused by the previous pollutants. In the case of CPF, the head and muscle tissue cholinesterase activity was inhibited from a concentration of 5 mu g/L both without and with MPs, and the AChE enzymatic activity for the treatment with MPs was approximately half the activity for the treatment without MPs in the tissues studied. Besides, TCS inhibited the cholinesterase activity at a concentration of 0.3 mg/L in the muscle of S. senegalensis. In contrast, no significant differences were observed in the TCS + MP treatment compared to the controls. These results showed the importance of studies in assessing the anticholinesterase effects of pesticides combined with microplastics due to the abundance of these contaminants in the marine environment and the role of cholinesterase activity (biomarker) in the neurotransmission of key physiological processes.
Afficher plus [+] Moins [-]Organophosphate pesticides in South African eutrophic estuaries: Spatial distribution, seasonal variation, and ecological risk assessment Texte intégral
2022
Olisah, Chijioke | Rubidge, Gletwyn | Human, Lucienne R.D. | Adams, Janine B.
The seasonal variation, spatial distribution, and ecological risks of thirteen organophosphate pesticides (OPPs) were studied in the Sundays and Swartkops estuaries in South Africa. Ten pesticides were detected in surface water samples from both estuaries, while all OPPs were detected in sediments. The highest concentration of OPPs (18.8 μg pyrazophos L⁻¹) was detected in surface water samples from Swartkops Estuary, while 48.7 μg phosalone kg⁻¹ dw was the highest in sediments collected from Sundays Estuary. There was no clear seasonal pattern in OPPs occurrence in surface water from both systems. However, their occurrence in sediments was in the following order: winter > autumn > summer > spring, perhaps indicating major pesticide input in the winter seasons. Results from ecological risk assessment showed that pyraclofos and chlorpyrifos (CHL) in surface water from both systems are respectively likely to cause high acute and chronic toxicity to fish (risk quotient – RQ > 1). For sediments of both estuaries, the highest acute and chronic RQs for fish were calculated for isazophos and CHL respectively. The majority of the detected OPPs in sediments posed potential high risks to Daphnia magna from both systems. These results suggest that these aquatic organisms (fish, and Daphnia), if present in the studied estuaries, can develop certain forms of abnormalities due to OPP exposure. To this end, proper measures should be taken to reduce OPP input into the estuarine systems.
Afficher plus [+] Moins [-]Biodegradation of 4-nitroaniline by novel isolate Bacillus sp. strain AVPP64 in the presence of pesticides Texte intégral
2022
Silambarasan, Sivagnanam | Cornejo, Pablo | Vangnai, Alisa S.
In this study, Bacillus sp. strain AVPP64 was isolated from diuron-contaminated soil. It showed 4-nitroaniline (4-NA) degradation, pesticide tolerance, and self-nutrient integration via nitrogen (N)-fixation and phosphate (P)-solubilization. The rate constant (k) and half-life period (t₁/₂) of 4-NA degradation in the aqueous medium inoculated with strain AVPP64 were observed to be 0.445 d⁻¹ and 1.55 d, respectively. Nevertheless, in the presence of chlorpyrifos, profenofos, atrazine and diuron pesticides, strain AVPP64 degraded 4-NA with t₁/₂ values of 2.55 d, 2.26 d, 2.31 d and 3.54 d, respectively. The strain AVPP64 fixed 140 μg mL⁻¹ of N and solubilized 103 μg mL⁻¹ of P during the presence of 4-NA. In addition, strain AVPP64 produced significant amounts of plant growth-promoting metabolites like indole 3-acetic acid, siderophores, exo-polysaccharides and ammonia. In the presence of 4-NA and various pesticides, strain AVPP64 greatly increased the growth and biomass of Vigna radiata and Crotalaria juncea plants. These results revealed that Bacillus sp. strain AVPP64 can be used as an inoculum for bioremediation of 4-NA contaminated soil and sustainable crop production even when pesticides are present.
Afficher plus [+] Moins [-]Developmental exposure to chlorpyrifos causes neuroinflammation via necroptosis in mouse hippocampus and human microglial cell line Texte intégral
2022
Du, Ying | Yang, Yongyong | Wang, Yue | Wu, Nana | Tao, Junyan | Yang, Guanghong | You, Mingdan
Neurodevelopmental exposure to chlorpyrifos (CPF) could increase risks for neurological disorders, such as autism spectrum disorder, cognitive impairment, or attention deficit hyperactivity disorder. The potential involvement of microglia reactive to inflammatory stimuli in these neurological disorders has been generally reported. However, the concrete effects and potential mechanisms of microglia dysfunction triggered by developmental CPF exposure remain unclear. Therefore, we established mouse and human embryonic microglial cells (HMC3 cell) models of developmental CPF exposure to evaluate the effects of developmental CPF exposure on neuroinflammation and underlying mechanisms. The results showed that developmental exposure to CPF enhanced the expression of Iba1 in hippocampus. CPF treatment increased inflammatory cytokines levels and TSPO expression in hippocampus and HMC3 cells. The levels of necroptosis and necroptosis-related signaling RIPK/MLKL were increased in hippocampus and HMC3 cells following CPF exposure. Furthermore, the expression of TLR4/TRIF signaling was increased in hippocampus and HMC3 cells subjected to CPF exposure. Notably, the increased levels of TLR4/TRIF signaling, RIPK/MLKL signaling, necroptosis and pro-inflammatory cytokines induced by CPF treatment were remarkably inhibited by TAK-242 (a specific TLR4 inhibitor). Additionally, the necroptosis and pro-inflammatory cytokines production induced by CPF treatment were significantly relieved by Nec-1 (a specific RIPK1 inhibitor). In general, the above results suggested that activated microglia in hippocampus subjected to developmental CPF exposure underwent RIPK1/MLKL-mediated necroptosis regulated by TLR4/TRIF signaling.
Afficher plus [+] Moins [-]Regioselective hydroxylation of carbendazim by mammalian cytochrome P450: A combined experimental and computational study Texte intégral
2022
Lv, Xia | Li, Jing-Xin | Wang, Jia-Yue | Tian, Xiang-Ge | Feng, Lei | Sun, Cheng-Peng | Ning, Jing | Wang, Chao | Zhao, Wen-Yu | Li, Ya-Chen | Ma, Xiao-Chi
Carbendazim (CBZ), a broad-spectrum pesticide frequently detected in fruits and vegetables, could trigger potential toxic risks to mammals. To facilitate the assessment of health risks, this study aimed to characterize the cytochrome P450 (CYPs)-mediated metabolism profiles of CBZ by a combined experimental and computational study. Our results demonstrated that CYPs-mediated region-selective hydroxylation was a major metabolism pathway for CBZ in liver microsomes from various species including rat, mouse, minipig, dog, rabbit, guinea pig, monkey, cow and human, and the metabolite was biosynthesized and well-characterized as 6-OH-CBZ. CYP1A displayed a predominant role in the region-selective hydroxylation of CBZ that could attenuate its toxicity through converting it into a less toxic metabolite. Meanwhile, five other common pesticides including chlorpyrifos-methyl, prochloraz, chlorfenapyr, chlorpyrifos, and chlorothalonil could significantly inhibit the region-selective hydroxylation of CBZ, and consequently remarkably increased CBZ exposure in vivo. Furthermore, computational study clarified the important contribution of the key amino acid residues Ser122, and Asp313 in CYP1A1, as well as Asp320 in CYP1A2 to the hydroxylation of CBZ through hydrogen bonds. These results would provide some useful information for the metabolic profiles of CBZ by mammalian CYPs, and shed new insights into CYP1A-mediated metabolic detoxification of CBZ and its health risk assessment.
Afficher plus [+] Moins [-]Agrochemicals in freshwater systems and their potential as endocrine disrupting chemicals: A South African context Texte intégral
2021
Horak, Ilzé | Horn, Suranie | Pieters, Rialet
South Africa is the largest agrochemical user in sub-Saharan Africa, with over 3000 registered pesticide products. Although they reduce crop losses, these chemicals reach non-target aquatic environments via leaching, spray drift or run-off. In this review, attention is paid to legacy and current-use pesticides reported in literature for the freshwater environment of South Africa and to the extent these are linked to endocrine disruption. Although banned, residues of many legacy organochlorine pesticides (endosulfan and dichlorodiphenyltrichloroethane (DDT)) are still detected in South African watercourses and wildlife. Several current-use pesticides (triazine herbicides, glyphosate-based herbicides, 2,4-dichlorophenoxyacetic acid (2,4-D) and chlorpyrifos) have also been reported. Agrochemicals can interfere with normal hormone function of non-target organism leading to various endocrine disrupting (ED) effects: intersex, reduced spermatogenesis, asymmetric urogenital papillae, testicular lesions and infertile eggs. Although studies investigating the occurrence of agrochemicals and/or ED effects in freshwater aquatic environments in South Africa have increased, few studies determined both the levels of agricultural pesticides present and associated ED effects. The majority of studies conducted are either laboratory-based employing in vitro or in vivo bioassays to determine ED effects of agrochemicals or studies that investigate environmental concentrations of pesticides. However, a combined approach of bioassays and chemical screening will provide a more comprehensive overview of agrochemical pollution of water systems in South Africa and the risks associated with long-term chronic exposure.
Afficher plus [+] Moins [-]Varying modalities of perinatal exposure to a pesticide cocktail elicit neurological adaptations in mice and zebrafish Texte intégral
2021
Forner-Piquer, Isabel | Klement, Wendy | Gangarossa, Giuseppe | Zub, Emma | de Bock, Frederic | Blaquiere, Marine | Maurice, Tangui | Audinat, Etienne | Faucherre, Adèle | Lasserre, Frederic | Ellero-Simatos, Sandrine | Gamet-Payrastre, Laurence | Jopling, Chris | Marchi, Nicola
Varying modalities of perinatal exposure to a pesticide cocktail elicit neurological adaptations in mice and zebrafish Texte intégral
2021
Forner-Piquer, Isabel | Klement, Wendy | Gangarossa, Giuseppe | Zub, Emma | de Bock, Frederic | Blaquiere, Marine | Maurice, Tangui | Audinat, Etienne | Faucherre, Adèle | Lasserre, Frederic | Ellero-Simatos, Sandrine | Gamet-Payrastre, Laurence | Jopling, Chris | Marchi, Nicola
Epidemiological indications connect maternal and developmental presence or exposure to pesticides with an increased risk for a spectrum of neurological trajectories. To provide pre-clinical data in support of this hypothesis, we used two distinct experimental models. First, female and male mice were fed immediately prior to mating, and the resulting pregnant dams were continously fed during gestation and lactation periods using chow pellets containing a cocktail of six pesticides at tolerable daily intake levels. Male and female offspring were then tracked for behavioral and in vivo electrophysiological adaptations. Second, a zebrafish model allowed us to screen toxicity and motor-behavior outcomes specifically associated with the developmental exposure to a low-to-high concentration range of the cocktail and of each individual pesticide. Here, we report anxiety-like behavior in aging male mice maternally exposed to the cocktail, as compared to age and gender matched sham animals. In parallel, in vivo electrocorticography revealed a decrease in gamma (40–80 Hz) and an increase of theta (6–9 Hz) waves, delineating a long-term, age-dependent, neuronal slowing. Neurological changes were not accompanied by brain structural malformations. Next, by using zebrafish larvae, we showed an increase of all motor-behavioral parameters resulting from the developmental exposure to 10 μg/L of pesticide cocktail, an outcome that was not associated with midbrain structural or neurovascular modifications as assessed by in vivo 2-photon microscopy. When screening each pesticide, chlorpyrifos elicited modifications of swimming parameters at 0.1 μg/L, while other components provoked changes from 0.5 μg/L. Ziram was the single most toxic component inducing developmental malformations and mortality at 10 μg/L. Although we have employed non-equivalent modalities and timing of exposure in two dissimilar experimental models, these outcomes indicate that presence of a pesticide cocktail during perinatal periods represents an element promoting behavioral and neurophysiological modifications. The study limitations and the possible pertinence of our findings to ecotoxicology and public health are critically discussed.
Afficher plus [+] Moins [-]Varying modalities of perinatal exposure to a pesticide cocktail elicit neurological adaptations in mice and zebrafish Texte intégral
2021
Forner-Piquer, Isabel | Klement, Wendy | Gangarossa, Giuseppe | Zub, Emma | de Bock, Frédéric | Blaquière, Marine | Maurice, Tangui | Audinat, Etienne | Faucherre, Adèle | Lasserre, Frédéric | Ellero-Simatos, Sandrine | Gamet-Payrastre, Laurence | Jopling, Chris | Marchi, Nicola | Institut de Génomique Fonctionnelle (IGF) ; Institut National de la Santé et de la Recherche Médicale (INSERM)-Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS) | Unité de Biologie Fonctionnelle et Adaptative (BFA (UMR_8251 / U1133)) ; Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS)-Université Paris Cité (UPCité) | Mécanismes moléculaires dans les démences neurodégénératives (MMDN) ; École Pratique des Hautes Études (EPHE) ; Université Paris Sciences et Lettres (PSL)-Université Paris Sciences et Lettres (PSL)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Université de Montpellier (UM) | Toxicologie Intégrative & Métabolisme (ToxAlim-TIM) ; ToxAlim (ToxAlim) ; Université Toulouse III - Paul Sabatier (UT3) ; Université de Toulouse (UT)-Université de Toulouse (UT)-Ecole Nationale Vétérinaire de Toulouse (ENVT) ; Institut National Polytechnique (Toulouse) (Toulouse INP) ; Université de Toulouse (UT)-Université de Toulouse (UT)-Institut National Polytechnique (Toulouse) (Toulouse INP) ; Université de Toulouse (UT)-Ecole d'Ingénieurs de Purpan (INP - PURPAN) ; Institut National Polytechnique (Toulouse) (Toulouse INP) ; Université de Toulouse (UT)-Université de Toulouse (UT)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE)-Université Toulouse III - Paul Sabatier (UT3) ; Université de Toulouse (UT)-Université de Toulouse (UT)-Ecole Nationale Vétérinaire de Toulouse (ENVT) ; Institut National Polytechnique (Toulouse) (Toulouse INP) ; Université de Toulouse (UT)-Université de Toulouse (UT)-Institut National Polytechnique (Toulouse) (Toulouse INP) ; Université de Toulouse (UT)-Ecole d'Ingénieurs de Purpan (INP - PURPAN) ; Institut National Polytechnique (Toulouse) (Toulouse INP) ; Université de Toulouse (UT)-Université de Toulouse (UT)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE) | This work was supported by ANSES Epidemicmac, MUSEiSite University of Montpellier, FRC and France Parkinson, ANR-Hepatobrain, ANR-Glyflore. | ANR-17-CE34-0005,HepatoBrain,Mélange de pesticides et axe foie-cerveau : implication des récepteurs aux xénobiotiques(2017)
International audience | Epidemiological indications connect maternal and developmental presence or exposure to pesticides with an increased risk for a spectrum of neurological trajectories. To provide pre-clinical data in support of this hypothesis, we used two distinct experimental models. First, female and male mice were fed immediately prior to mating, and the resulting pregnant dams were continously fed during gestation and lactation periods using chow pellets containing a cocktail of six pesticides at tolerable daily intake levels. Male and female offspring were then tracked for behavioral and in vivo electrophysiological adaptations. Second, a zebrafish model allowed us to screen toxicity and motor-behavior outcomes specifically associated with the developmental exposure to a low-to-high concentration range of the cocktail and of each individual pesticide. Here, we report anxiety-like behavior in aging male mice maternally exposed to the cocktail, as compared to age and gender matched sham animals. In parallel, in vivo electrocorticography revealed a decrease in gamma (40-80 Hz) and an increase of theta (6-9 Hz) waves, delineating a long-term, age-dependent, neuronal slowing. Neurological changes were not accompanied by brain structural malformations. Next, by using zebrafish larvae, we showed an increase of all motor-behavioral parameters resulting from the developmental exposure to 10 μg/L of pesticide cocktail, an outcome that was not associated with midbrain structural or neurovascular modifications as assessed by in vivo 2-photon microscopy. When screening each pesticide, chlorpyrifos elicited modifications of swimming parameters at 0.1 μg/L, while other components provoked changes from 0.5 μg/L. Ziram was the single most toxic component inducing developmental malformations and mortality at 10 μg/L. Although we have employed non-equivalent modalities and timing of exposure in two dissimilar experimental models, these outcomes indicate that presence of a pesticide cocktail during perinatal periods represents an element promoting behavioral and neurophysiological modifications. The study limitations and the possible pertinence of our findings to ecotoxicology and public health are critically discussed.
Afficher plus [+] Moins [-]Chlorpyrifos and persistent organic pollutants in feathers of the near threatened Olrog’s Gull in southeastern Buenos Aires Province, Argentina Texte intégral
2021
Quadri-Adrogué, Agustina | Seco Pon, Juan Pablo | García, Germán Oscar | Castano, Melina Vanesa | Copello, Sofia | Favero, Marco | Beatriz Miglioranza, Karina Silvia
The use of bird feathers to assess environmental contamination has steadily increased in ecotoxicological monitoring programs over the past decade. The Olrog’s Gull (Larus atlanticus) is a species endemic to the Atlantic coast of southern South America, constituting one of the three threatened gull species listed in the entire American continent. The aim of this study was to assess the exposure to Persistent Organic Pollutants (POPs) and chlorpyrifos in the Near Threatened Olrog’s Gull through the analysis of body feathers sampled at the Mar Chiquita coastal lagoon, the main wintering area of the species in Argentina, controlling for sex and age class. Chlorpyrifos showed the highest concentrations among all contaminants and groups of individuals (X¯ = 263 ng g⁻¹), while among POPs the concentration of organochlorine pesticides was higher than polychlorinated biphenyls and polybrominated diphenyl ethers, likely indicating the current use of these agricultural contaminant in the region. The highest values of total POP concentrations (males X¯ = 280 ng g⁻¹, females X¯ = 301 ng g⁻¹) were found in juvenile gulls, likely as a consequence of the incorporation of pollutants during the breeding season. Subadult and adult birds showed difference between sexes in the concentration of contaminants, with higher levels in males than females. The results highlight the need to include birds of different sex and age classes in order to better understand the variation in pollutants loads. The present study provides relevant information to improve the conservation status of the Olrog’s Gull and new insights about the environmental health of the Mar Chiquita coastal lagoon, Argentina, a MAB-UNESCO World Biosphere Reserve. However, there is a continued need for long-term monitoring programs focusing on this threatened species to understand the effects of pollutants on its population.
Afficher plus [+] Moins [-]Transgenerational exposure to warming reduces the sensitivity to a pesticide under warming Texte intégral
2021
Meng, Shandong | Tran, Tam T. | Delnat, Vienna | Stoks, Robby
Despite the increased attention for temporal aspects of stressor interactions and for effects of warming in ecotoxicological studies, we lack knowledge on how different exposure durations to warming may affect pesticide sensitivity. We tested how three types of exposure duration to 4 °C warming (acute, developmental and transgenerational exposure to 24 °C vs 20 °C) shape the effect of the pesticide chlorpyrifos on two ecologically relevant fitness-related traits of mosquito larvae: heat tolerance and antipredator behaviour. Transgenerational (from the parental generation) and developmental (from the egg stage) warming appeared energetically more stressful than acute warming (from the final instar), because (i) only the latter resulted in an adaptive increase of heat tolerance, and (ii) especially developmental and transgenerational warming reduced the diving responsiveness and diving time. Exposure to chlorpyrifos decreased the heat tolerance, diving responsiveness and diving time. The impact of chlorpyrifos was lower at 24 °C than at 20 °C indicating that the expected increase in toxicity at 24 °C was overruled by the observed increase in pesticide degradation. Notably, although our results suggest that transgenerational warming was energetically more stressful, it did reduce the chlorpyrifos-induced negative effects at 24 °C on heat tolerance and the alarm escape response compared to acute warming. Our results provide important evidence that the exposure duration to warming may determine the impact of a pesticide under warming, thereby identifying a novel temporal aspect of stressor interactions in risk assessment.
Afficher plus [+] Moins [-]Monitoring and environmental risk assessment of pesticide residues and some of their degradation products in natural waters of the Spanish vineyard region included in the Denomination of Origin Jumilla Texte intégral
2020
Herrero-Hernández, Eliseo | Simón-Egea, Ana B. | Sánchez-Martín, María J. | Rodríguez-Cruz, M Sonia | Andrades, M Soledad
Monitoring and environmental risk assessment of pesticide residues and some of their degradation products in natural waters of the Spanish vineyard region included in the Denomination of Origin Jumilla Texte intégral
2020
Herrero-Hernández, Eliseo | Simón-Egea, Ana B. | Sánchez-Martín, María J. | Rodríguez-Cruz, M Sonia | Andrades, M Soledad
Water pollution by pesticides used in agriculture is currently a major concern both in Spain and in Europe as a whole, prompting the need to evaluate water quality and ecological risk in areas of intensive agriculture. This study involved monitoring pesticide residues and certain degradation products in surface and ground waters of the Denomination of Origin (DO) Jumilla vineyard area in Spain. Sixty-nine pesticides were selected and evaluated at twenty-one sampling points using a multi-residue analytical method, based on solid-phase extraction (SPE) and analysis by liquid chromatography coupled with mass spectrometry (LC-MS), providing reliable results. Twenty-six compounds from those selected were detected in the samples analyzed (eleven insecticides including one degradation product, nine herbicides, and six fungicides) and fifteen of them were found in concentrations over 0.1 μg L⁻¹ (upper threshold established by the EU for pesticides detected in waters for human consumption). Indoxacarb was present in more than 70% of the samples, being the most frequently detected compound in water samples. Some pesticides were ubiquitous in all the water samples. Ecotoxicological risk indicators, toxic units (TUs) and risk quotients (RQs), for algae, Daphnia magna and fish were calculated to estimate the environmental risk of the presence of pesticides in waters. The compounds with the highest risk were the herbicides pendimethalin, with RQ values > 1 for the three aquatic organisms, and diflufenican, posing a high risk for algae and fish, and the insecticide chlorpyrifos, with a high risk for Daphnia magna and fish. The ∑TUi determined for water at each sampling point posed only a high risk for the three aquatic organisms in a sample. These results are important for considering the selection of pesticides with less environmental risk in intensive agricultural areas.
Afficher plus [+] Moins [-]Monitoring and environmental risk assessment of pesticide residues and some of their degradation products in natural waters of the Spanish vineyard region included in the Denomination of Origin Jumilla Texte intégral
2020
Herrero Hernández, Eliseo | Simón-Egea, Ana B. | Sánchez Martín, M. Jesús | Rodríguez Cruz, M. Sonia | Andrades, M. Soledad | Herrero Hernández, Eliseo [0000-0002-5778-9183] | Sánchez Martín, M. Jesús [0000-0002-8304-1232] | Rodríguez Cruz, M. Sonia [0000-0001-6748-3391] | Andrades, M. Soledad [0000-0003-4136-8656]
44 páginas, 3 figuras, 3 tablas, 3 tablas suplementarias, 2 figuras suplementarias. -- The final version is available at http://www.elsevier.com | Water pollution by pesticides used in agriculture is currently a major concern both in Spain and in Europe as a whole, prompting the need to evaluate water quality and ecological risk in areas of intensive agriculture. This study involved monitoring pesticide residues and certain degradation products in surface and ground waters of the Denomination of Origin (DO) Jumilla vineyard area in Spain. Sixty-nine pesticides were selected and evaluated at twenty-one sampling points using a multi-residue analytical method, based on solid-phase extraction (SPE) and analysis by liquid chromatography coupled with mass spectrometry (LC-MS), providing reliable results. Twenty-six compounds from those selected were detected in the samples analyzed (eleven insecticides including one degradation product, nine herbicides, and six fungicides) and fifteen of them were found in concentrations over 0.1 μg L−1 (upper threshold established by the EU for pesticides detected in waters for human consumption). Indoxacarb was present in more than 70% of the samples, being the most frequently detected compound in water samples. Some pesticides were ubiquitous in all the water samples. Ecotoxicological risk indicators, toxic units (TUs) and risk quotients (RQs), for algae, Daphnia magna and fish were calculated to estimate the environmental risk of the presence of pesticides in waters. The compounds with the highest risk were the herbicides pendimethalin, with RQ values > 1 for the three aquatic organisms, and diflufenican, posing a high risk for algae and fish, and the insecticide chlorpyrifos, with a high risk for Daphnia magna and fish. The ∑TUi determined for water at each sampling point posed only a high risk for the three aquatic organisms in a sample. These results are important for considering the selection of pesticides with less environmental risk in intensive agricultural area | Peer reviewed
Afficher plus [+] Moins [-]Monitoring and environmental risk assessment of pesticide residues and some of their degradation products in natural waters of the Spanish vineyard region included in the Denomination of Origin Jumilla Texte intégral
2020
Herrero Hern?ndez, Eliseo | Sim?n Egea, Ana B. | S?nchez Mart?n, Mar?a J. | Rodr?guez Cruz, Mar?a Sonia | Andrades, M.Soledad
[EN] Water pollution by pesticides used in agriculture is currently a major concern both in Spain and in Europe as a whole, prompting the need to evaluate water quality and ecological risk in areas of intensive agriculture. This study involved monitoring pesticide residues and certain degradation products in surface and ground waters of the Denomination of Origin (DO) Jumilla vineyard area in Spain. Sixty-nine pesticides were selected and evaluated at twenty-one sampling points using a multi-residue analytical method, based on solid-phase extraction (SPE) and analysis by liquid chromatography coupled with mass spectrometry (LC-MS), providing reliable results. Twenty-six compounds from those selected were detected in the samples analyzed (eleven insecticides including one degradation product, nine herbicides, and six fungicides) and fifteen of them were found in concentrations over 0.1 ?g L?1 (upper threshold established by the EU for pesticides detected in waters for human consumption). Indoxacarb was present in more than 70% of the samples, being the most frequently detected compound in water samples. Some pesticides were ubiquitous in all the water samples. Ecotoxicological risk indicators, toxic units (TUs) and risk quotients (RQs), for algae, Daphnia magna and fish were calculated to estimate the environmental risk of the presence of pesticides in waters. The compounds with the highest risk were the herbicides pendimethalin, with RQ values > 1 for the three aquatic organisms, and diflufenican, posing a high risk for algae and fish, and the insecticide chlorpyrifos, with a high risk for Daphnia magna and fish. The ?TUi determined for water at each sampling point posed only a high risk for the three aquatic organisms in a sample. These results are important for considering the selection of pesticides with less environmental risk in intensive agricultural areas.
Afficher plus [+] Moins [-]