Affiner votre recherche
Résultats 1-10 de 22
Spatiotemporal Analysis of Carbon Monoxide Observed by Terra/MOPITT in the Troposphere of Iran
2020
Raispour, K. | Khosravi, Y.
It has been more than 20 years that the Measurement of Pollution in The Troposphere (MOPITT) mission onboard the NASA Terra satellite keeps providing us CO atmospheric concentration measurements around the globe. The current paper observes CO mixing ratio from the MOPITT Version 8 (MOP03J_V008) instrument in order to study the spatiotemporal analysis of CO (spanning from April 2000 to February 2020) in the Troposphere of Iran. Results indicate that the average CO in Iran’s troposphere has been 133.5 ppbv (i.e., 5.5 ppbv lower than the global mean CO). The highest distribution of CO (with an average of 150 ppbv) belongs to the city of Tehran (the capital of Iran) as well as the Caspian Sea coastal area, while the lowest value (with an average of less than 110 ppbv) has been estimated on the Zagros Mountains (southwestern Iran). The highest and lowest CO values have been observed in cold and hot months, respectively. Seasonally speaking, it is also clear that the highest and lowest carbon monoxide values occur in winter and summer, respectively. The vertical profile of MOPITT CO shows the maximum CO concentration at lower levels of the troposphere. It has been expanded up to 150 hPa. The trend is investigated by means of Pearson correlation coefficient statistical method. Overall, long-term monitoring of MOPITT CO in Iran indicates a decreasing trend of tropospheric CO over the 20 years (Y=-0.008X+449.31). Possible reasons for such a decrease can be related to improved transportation fleet, increased fuel quality, plans for traffic control, promotion of heating systems, and promotion of industrial fuels and factories.
Afficher plus [+] Moins [-]Modeling of Air Pollutants’ Dispersion by Means of CALMET/CALPUFF (Case Study: District 7 in Tehran city).
2018
Joneidi, Neda | Rashidi, Yousef | Atabi, Farideh | broomandi, parya
The current study aims at modelling the dispersion of two pollutants, namely CO (carbon monoxide) and SO2 (sulfur dioxide) released from District 7 of Tehran Municiaplity, from 20 main line sources, by means of CALPUFF modeling system. CALPUFF is a non-steady state puff modeling software which employs meteorological, terrain, and land-use data to effectively simulate air pollutants' dispersion from a given source. CALMET software has been applied to provide meteorological conditions within the study domain. The study has been carried out on September 30, 2012 and shows that the modeled concentrations have been below both Iranian air ambient standard and NAAQS standard for CO and SO2. It also compares the measurements from the monitoring station of Setad Bohran, showing that the simulated hourly mean concentrations of the SO2 and CO do not follow similar temporal patterns for measurement values. For the absolute value, model results seem to be highly underestimated, compared to the monitored data (R2 = -0.41).
Afficher plus [+] Moins [-]Status of CO as an air pollutant and its prediction, using meteorological parameters in Esfahan, Iran
2017
Masoudi, Masoud | Gerami, Soraya
The present study analyzes air quality for Carbon monoxide (CO), in Esfahan with the measurements taken in three different locations to prepare average data in the city. The average concentrations have been measured every 24 hours, every month and every season with the results showing that the highest concentration of CO occurs generally in the morning and at the beginning of night, while the least concentration has been found in the afternoon and early morning. Monthly concentrations of CO show the highest values in August and the lowest values in February. The seasonal concentrations show the least amounts in spring, while the highest amounts belong to summer. Relations between the air pollutant and some meteorological parameters have been calculated statistically, using the daily average data. The data include Temperature (min, max), precipitation, Wind Direction (max), Wind Speed (max), and Evaporation, considered independent variables. The relations between the pollutant concentration and meteorological parameters have been expressed by multiple linear regression equations for both annual and seasonal conditions, using SPSS software. Analysis of variance shows that both regressions of ‘enter’ and ‘stepwise’ methods are highly significant, indicating a significant relation between the CO and different variables, especially for temperature and wind speed in annual condition. RMSE test shows that among different prediction models, stepwise model is the best option.
Afficher plus [+] Moins [-]Inequalities in occupational exposures among people using popular commute modes
2022
Patra, Arpan | Phuleria, Harish C.
Several recent studies have looked into the differences in air qualities inside popular commute modes. The impact of daily commuting patterns and work-related trips on inhalation doses, however, are not investigated. The purpose of this study is to quantify the variation in air pollutants within popular commute modes in Mumbai, India, and to estimate the variation in exposure as a result of occupational or work-related trips across different sub-groups. Real-time pollutants, both gaseous and particulate matters (PM), were measured on a pre-defined route during rush and non-rush hours on buses, cars, auto-rickshaws, sub-urban trains, and motorbikes through several trips (N = 98). Household surveys were conducted to estimate the exposures of different occupational subgroups (cab-driver, auto-rickshaw drivers, delivery persons) and people commuting to their offices daily. Participants (N = 800) from various socioeconomic backgrounds in the city were asked about their job categories, work-activity patterns, and work-related commute trips. Mass concentrations of particles in different size ranges (PM₁, PM₂.₅, and PM₁₀) were substantially higher (p < 0.05) inside auto-rickshaws (44.6 μg/m³, 84.7 μg/m³, and 138.3 μg/m³) compared to other modes. Inside cars, gaseous pollutants such as carbon monoxide (CO) and total volatile organic compounds (TVOC) were significantly higher (p < 0.05). Although both gaseous and particulate concentrations were lower (p < 0.05) inside buses, bus-commuters were found to be highly exposed to the pollutants due to the extended trip time (∼1.2 times longer than other modes) and driving conditions. Office commuters inhale a large fraction of their daily doses (25–30%) during their work-related travel. Occupational sub-groups, on the other hand, inhale ∼90% of the pollutants during their work. In a day, an auto-rickshaw driver inhales 10–15% more (p < 0.05) pollutants than cab driver or delivery personnel. Therefore, this study highlights the inequalities in occupational exposure as a combined effect of in-cabin air qualities and commute patterns due to occupational obligations.
Afficher plus [+] Moins [-]Does liming grasslands increase biomass productivity without causing detrimental impacts on net greenhouse gas emissions?
2022
Abdalla, Mohamed | Espenberg, Mikk | Zavattaro, Laura | Lellei-Kovacs, Eszter | Mander, Ulo | Smith, Kate | Thorman, Rachel | Damatirca, Claudia | Schils, Rene | ten-Berge, Hein | Newell-Price, Paul | Smith, Pete
Soil acidification has negative impacts on grass biomass production and the potential of grasslands to mitigate greenhouse gas (GHG) emissions. Through a global review of research on liming of grasslands, the objective of this paper was to assess the impacts of liming on soil pH, grass biomass production and total net GHG exchange (nitrous oxide (N2O), methane (CH4) and net carbon dioxide (CO2)). We collected 57 studies carried out at 88 sites and covering different countries and climatic zones. All of the studies examined showed that liming either reduced or had no effects on the emissions of two potent greenhouse gases (N2O and CH4). Though liming of grasslands can increase net CO2 emissions, the impact on total net GHG emission is minimal due to the higher global warming potential, over a 100-year period, of N2O and CH4 compared to that of CO2. Liming grassland delivers many potential advantages, which justify its wider adoption. It significantly ameliorates soil acidity, increases grass productivity, reduces fertiliser requirement and increases species richness. To realise the maximum benefit of liming grassland, we suggest that acidic soils should be moderately limed within the context of specific climates, soils and management.
Afficher plus [+] Moins [-]Association of ambient air pollution exposure and its variability with subjective sleep quality in China: A multilevel modeling analysis
2022
Wang, Lingli | Zhang, Jingxuan | Wei, Jing | Zong, Jingru | Lü, Chunyu | Du, Yajie | Wang, Qing
Growing epidemiological evidence has shown that exposure to ambient air pollution contributes to poor sleep quality. However, whether variability in air pollution exposure affects sleep quality remains unclear. Based on a large sample in China, this study linked individual air pollutant exposure levels and temporal variability with subjective sleep quality. Town-level data on daily air pollution concentration for 30 days prior to the survey date were collected, and the monthly mean value, standard deviations, number of heavily polluted days, and trajectory for six common pollutants were calculated to measure air pollution exposure and its variations. Sleep quality was subjectively assessed using the Pittsburgh Sleep Quality Index (PSQI), and a PSQI score above 5 indicated overall poor sleep quality. Multilevel and negative control models were used. Both air pollution exposure and variability contributed to poor sleep quality. A one-point increase in the one-month mean concentration of particulate matter with aerodynamic diameters of ≤2.5 μm (PM₂.₅) and ≤10 μm (PM₁₀) led to 0.4% (95% confidence interval (CI): 1.002–1.006) and 0.3% (95% CI: 1.001–1.004) increases in the likelihoods of overall poor sleep quality (PSQI score >5), respectively; the odds ratios of a heavy pollution day with PM₂.₅ and PM₁₀ were 2.2% (95% CI: 1.012–1.032) and 2.2% (95% CI: 1.012–1.032), respectively. Although the mean concentrations of nitrogen dioxide, sulfur dioxide, and carbon monoxide met the national standard, they contributed to the likelihood of overall poor sleep quality (PSQI score >5). A trajectory of air pollution exposure with maximum variability was associated with a higher likelihood of overall poor sleep quality (PSQI score >5). Subjective measures of sleep latency, duration, and efficiency (derived from PSQI) were affected in most cases. Thus, sleep health improvements should account for air pollution exposure and its variations in China under relatively high air pollution levels.
Afficher plus [+] Moins [-]Hemin-decreased cadmium uptake in pak choi (Brassica chinensis L.) seedlings is heme oxygenase-1 dependent and relies on its by-products ferrous iron and carbon monoxide
2021
Su, Nana | Niu, Mengyang | Liu, Ze | Wang, Lu | Zhu, Zhengbo | Zou, Jianwen | Chen, Yahua | Cui, Jin
Cadmium (Cd) is a major pollutant in farmland, which not only greatly restricts crop production, but also brings a serious threat to human health through entering the food chain. Our previous study showed that hemin treatment could reduce the accumulation of Cd in pak choi seedlings. However, the underlying mechanism remains unclear. In this study, we used non-invasive micro-test technology (NMT) to detect the real-time Cd²⁺ flux from pak choi roots and demonstrated that hemin treatment decreased Cd uptake rather than its translocation within plants. Moreover, through comparing the responses of different chemical treatments in pak choi seedlings and Arabidopsis wild-type and heme oxygenase-1 (HO-1) mutant, we provided evidence that hemin-decreased Cd uptake was HO-1 dependent. Furthermore, analyses of hemin degradation products suggested that the hemin-derived suppression of Cd uptake suppression was probably relying on its degradation by-products, ferrous iron (Fe²⁺) and carbon monoxide (CO), via repressing the expression of a Fe²⁺/Cd²⁺ transporter BcIRT1 in pak choi roots.
Afficher plus [+] Moins [-]Assessment of lung cell toxicity of various gasoline engine exhausts using a versatile in vitro exposure system
2018
Bisig, Christoph | Comte, Pierre | Güdel, Martin | Czerwiński, Janusz | Mayer, Andreas | Müller, Loretta | Petri-Fink, Alke | Rothen-Rutishauser, Barbara
Adverse effect studies of gasoline exhaust are scarce, even though gasoline direct injection (GDI) vehicles can emit a high number of particles.The aim of this study was to conduct an in vitro hazard assessment of different GDI exhausts using two different cell culture models mimicking the human airway. In addition to gasoline particle filters (GPF), the effects of two lubrication oils with low and high ash content were assessed, since it is known that oils are important contributors to exhaust emissions.Complete exhausts from two gasoline driven cars (GDI1 and GDI2) were applied for 6 h (acute exposure) to a multi-cellular human lung model (16HBE14o-cell line, macrophages, and dendritic cells) and a primary human airway model (MucilAir™). GDI1 vehicle was driven unfiltered and filtered with an uncoated and a coated GPF. GDI2 vehicle was driven under four settings with different fuels: normal unleaded gasoline, 2% high and low ash oil in gasoline, and 2% high ash oil in gasoline with a GPF. GDI1 unfiltered was also used for a repeated exposure (3 times 6 h) to assess possible adverse effects.After 6 h exposure, no genes or proteins for oxidative stress or pro-inflammation were upregulated compared to the filtered air control in both cell systems, neither in GDI1 with GPFs nor in GDI2 with the different fuels. However, the repeated exposure led to a significant increase in HMOX1 and TNFa gene expression in the multi-cellular model, showing the responsiveness of the system towards gasoline engine exhaust upon prolonged exposure.The reduction of particles by GPFs is significant and no adverse effects were observed in vitro during a short-term exposure. On the other hand, more data comparing different lubrication oils and their possible adverse effects are needed. Future experiments also should, as shown here, focus on repeated exposures.
Afficher plus [+] Moins [-]Reproductive toxicity of azoxystrobin to adult zebrafish (Danio rerio)
2016
Cao, Fangjie | Zhu, Lizhen | Li, Hui | Yu, Song | Wang, Chengju | Qiu, Lihong
In the past few decades, extensive application of azoxystrobin has led to great concern regarding its adverse effects on aquatic organisms. The objective of the present study was to evaluate the reproductive toxicity of azoxystrobin to zebrafish. After adult zebrafish of both sexes were exposed to 2, 20 and 200 μg/L azoxystrobin for 21 days, egg production, the fertilization rate, the gonadosomatic index (GSI) and hepatosomatic index (HSI), 17β-estradiol (E2), testosterone (T) and vitellogenin (Vtg) concentrations, and histological alterations in the gonads and livers were measured. Meanwhile, expression alterations of genes encoding gonadotropins and gonadotropin receptors (fshb, lhb, fshr and lhr), steroid hormone receptors (era, er2b and ar), steroidogenic enzymes (cyp11a, cyp11b, cyp17, cyp19a, cyp19b, hsd3b and hsd17b) in the hypothalamic-pituitary-gonad (HPG) axis and vitellogenin (vtg1 and vtg2) in the livers were also investigated. The results showed that reduced egg production and fertilization rates were observed at 200 μg/L azoxystrobin. In female zebrafish, reduced E2 and Vtg concentrations, decreased GSI, increased T concentrations, and histological alterations in the ovaries and livers were observed at 200 μg/L azoxystrobin, along with significant down-regulation of lhb, cyp19b, lhr, cyp19a, vtg1 and vtg2, and up-regulation of cyp17, hsd3b and hsd17b. In male zebrafish, increased E2 and Vtg concentrations, reduced T concentration and GSI, and histological alterations in the testes and livers were observed after exposure to 20 and 200 μg/L azoxystrobin, along with significant up-regulations of cyp19b, cyp11a, cyp17, cyp19a, hsd3b and hsd17b, vtg1 and vtg2. Moreover, cyp11a, hsd3b, cyp19a, vtg1 and vtg2 in male zebrafish were significantly up-regulated after treatment with 2 μg/L azoxystrobin. The results of the present study indicate that azoxystrobin led to reproductive toxicity in zebrafish and male zebrafish were more sensitive to azoxystrobin than female zebrafish.
Afficher plus [+] Moins [-]Does liming grasslands increase biomass productivity without causing detrimental impacts on net greenhouse gas emissions?
2022
Abdalla, Mohamed | Espenberg, Mikk | Zavattaro, Laura | Lellei-Kovacs, Eszter | Mander, Ulo | Smith, Kate | Thorman, Rachel | Damatirca, Claudia | Schils, Rene | ten-Berge, Hein | Newell-Price, Paul | Smith, Pete
Soil acidification has negative impacts on grass biomass production and the potential of grasslands to mitigate greenhouse gas (GHG) emissions. Through a global review of research on liming of grasslands, the objective of this paper was to assess the impacts of liming on soil pH, grass biomass production and total net GHG exchange (nitrous oxide (N2O), methane (CH4) and net carbon dioxide (CO2)). We collected 57 studies carried out at 88 sites and covering different countries and climatic zones. All of the studies examined showed that liming either reduced or had no effects on the emissions of two potent greenhouse gases (N2O and CH4). Though liming of grasslands can increase net CO2 emissions, the impact on total net GHG emission is minimal due to the higher global warming potential, over a 100-year period, of N2O and CH4 compared to that of CO2. Liming grassland delivers many potential advantages, which justify its wider adoption. It significantly ameliorates soil acidity, increases grass productivity, reduces fertiliser requirement and increases species richness. To realise the maximum benefit of liming grassland, we suggest that acidic soils should be moderately limed within the context of specific climates, soils and management.
Afficher plus [+] Moins [-]