Affiner votre recherche
Résultats 1-2 de 2
Soybean isoflavone ameliorates cognitive impairment, neuroinflammation, and amyloid β accumulation in a rat model of Alzheimer’s disease
2019
Essawy, Amina E. | Abdou, Heba Mohamed | Ibrahim, Hania M. | Bouthahab, Najya M.
Oxidative stress and neuroinflammatory changes appear to be the early events involved in AD’s development and progression. The present study was designed to assess the effect of soybean isoflavone extract (SIFE) against colchicine-induced cognitive dysfunction and oxidative stress in male rats.Fifty adult male Wistar albino rats were divided into five groups: control, ACSF-treated group, soybean isoflavones (SIF)-treated group, colchicine (COL)-treated group, and SIF + COL-treated group. We found that an intracerebroventricular (icv) injection of a single dose of colchicine (7.5 μg/rat bilaterally) resulted in learning deficits in rats subjected to the Morris water maze task associated with marked oxidative damage and decreased acetyl cholinesterase (AChE) activity. In addition, COL caused significant increase in amyloid beta peptide 1-42 (β, amyloid 1-42) interleukin-1β (IL-1β), tumor necrosis factor-α (TNFα), cyclooxygenase-2 (COX-2) and TNF-α genes expression in the brain, and glial fibrillary acidic protein (GFAP) in cortical astrocytes in the brain cortex.Treatment with SIFE (80 mg/kg b.wt) daily for 14 days followed by a single dose of COL significantly reduced the elevated oxidative stress parameters and restored the reduced antioxidant activities. Besides, the administration of SIFE reversed the overproduction of β, amyloid 1-42, pro-inflammatory cytokines, and GFAP in the brain. The obtained results were confirmed by histological observations that clearly indicate a neuroprotective effect of SIF against AD.
Afficher plus [+] Moins [-]Biosynthesis of silver nanoparticles by leaf extract of Albizia saman (Jacq.) Merr. and their cytotoxic effect on mitotic chromosomes of Drimia indica (Roxb.) Jessop
2017
Daphedar, Azharuddin | Taranath, Tarikeri C.
Silver nanoparticles synthesized using the leaf extract of Albizia saman (Jacq.) Merr. were tested for induction of cytogenetic abnormality in root tip cells of Drimia indica (Roxb.) Jessop (family Asperagaceae). The leaves are known to be rich in various phytochemicals like flavonoids, glycosides, saponins, steroids, tannins, and terpenoids, which may be responsible for bioreduction, biocapping, and stabilization of nanoparticles. The various instruments used for characterization include UV-VIS spectrophotometer, fourier transform infrared spectroscopy (FTIR), atomic force microscopy (AFM), X-Ray diffractometer (XRD), and high resolution transmission electron microscope (HR-TEM). The present study aims to evaluate the cytotoxic effect of biogenic silver nanoparticles on mitotic chromosomes by using root tip cells of D. indica. The root tips of D. indica was treated with suspensions of silver nanoparticles mixed in distilled water at different concentrations viz., 25, 50, 75, and 100% (w/v) for 6, 12, 18, and 24 h and then fixed in 1:3 ethanol: acetic acid following pre-treatment with 0.05% colchicine for cytological analysis. Silver nanoparticles induced a dose dependent decrease of mitotic index in root meristems. Furthermore, the treated meristem cells showed various types of chromosomal and mitotic aberrations such as anaphase bridge, sticky metaphase, lagging, or forward chromosome indicating genotoxic damage.
Afficher plus [+] Moins [-]