Affiner votre recherche
Résultats 1-2 de 2
Protective effect of green tea catechin against urban fine dust particle-induced skin aging by regulation of NF-κB, AP-1, and MAPKs signaling pathways
2019
Wang, Lei | Lee, WonWoo | Cui, Yong Ri | Ahn, Ginnae | Jeon, You-Jin
The increase in ambient fine dust particles (FDP) due to urbanization and industrialization has been identified as a major contributor to air pollution. It has become a serious issue that threatens human health because it causes respiratory diseases and skin aging. In the present study, the protective effect of the green tea catechin, (−)-epigallocatechin gallate (EGCG), against FDP (ERM-CZ100)-stimulated skin aging in human dermal fibroblasts (HDFs) was investigated. The results demonstrate that EGCG significantly and dose-dependently scavenged intracellular reactive oxygen species (ROS) in and increased the viability of FDP-stimulated HDFs. In addition, EGCG dose-dependently recovered collagen synthesis and inhibited intracellular elastase and collagenase activities. Moreover, EGCG decreased the expression of human matrix metalloproteinases (MMPs) via regulation of nuclear factor kappa B (NF-κB), activator protein 1 (AP-1), and mitogen-activated protein kinases (MAPKs) signaling pathways in FDP-stimulated HDFs. This study suggests that EGCG is a potential anti-aging candidate that can be used for FDP-induced skin aging as a therapeutic agent itself or as an ingredient in pharmaceutical and cosmeceutical products.
Afficher plus [+] Moins [-]Using a liver cell culture from Epinephelus coioides as a model to evaluate the nonylphenol-induced oxidative stress
2017
Derakhshesh, Negin | Movahedinia, AbdolAli | Salamat, Negin | Hashemitabar, Mahmoud | Bayati, Vahid
The present study aimed to use primary liver cell culture derived from the orange-spotted grouper, Epinephelus coioides, to assess the toxic effects of nonylphenol (NP) on the hepatocyte viability and the liver antioxidant system. E. coioides was selected due to its commercial importance. NP was used in this study because of its high potential of producing oxidative stress due to increased reactive oxygen species (ROS). A liver of E. coioides was digested with PBS containing 0.1% collagenase IV. The digested cells were moved to Leibovitz L-15 culture medium with 20% fetal bovine serum (FBS), 100IUmL−1 penicillin, 100μgmL−1 streptomycin. Aliquots of cell suspension were seeded as a monolayer into sterile 25cm2 tissue culture flasks and incubated at 30°C for 14days. The medium, containing non-attached cells, was removed after 24 to 48h and a new medium was added. The IC50 of 10−4molL−1 was determined for nonylphenol using MTT assay. Cells were then incubated with L-15 medium containing 10−5, 2×10−5, 3×10−5molL−1 of NP and samples were taken after 6, 12 and 24h of incubation for analysis of LPO, SOD, CAT, GPx, LDH, AST, ALT, and ALP. Based on the results, the lowest concentration of NP was not markedly cytotoxic to primary hepatocytes and the cell sensitivity to NP increased dose-dependently. The activities of SOD, CAT and GPx decreased significantly, while activities of LPO, LDH, AST, ALT and ALP, increased significantly in a dose-related pattern in NP-treated cells. In conclusion, this study revealed that NP could induce the oxidative stress in cultivated hepatocytes of E. coioides during a short-term exposure. NP toxicity is mainly due to the induction of the reactive oxygen species (ROS), which lead to cell membrane disruption, damage of cellular metabolism, and interference with cellular macromolecules.
Afficher plus [+] Moins [-]