Affiner votre recherche
Résultats 1-10 de 359
Metal(loid) pollution, not urbanisation nor parasites predicts low body condition in a wetland bioindicator snake
2022
Lettoof, Damian C. | Cornelis, Jari | Jolly, Christopher J. | Aubret, Fabien | Gagnon, Marthe Monique | Hyndman, Timothy H. | Barton, Diane P. | Bateman, Philip W.
Urban ecosystems and remnant habitat 'islands' therein, provide important strongholds for many wildlife species including those of conservation significance. However, the persistence of these habitats can be undermined if their structure and function are too severely disrupted. Urban wetlands, specifically, are usually degraded by a monoculture of invasive vegetation, disrupted hydrology, and chronic-contamination from a suite of anthropogenic pollutants. Top predators—as bioindicators—can be used to assess and monitor the health of these ecosystems. We measured eight health parameters (e.g., parasites, wounds and scars, tail loss and body condition) in a wetland top predator, the western tiger snake, Notechis scutatus occidentalis. For three years, snakes were sampled across four wetlands along an urban gradient. For each site, we used GIS software to measure the area of different landscapes and calculate an urbanisation–landscape score. Previously published research on snake contamination informed our calculations of a metal-pollution index for each site. We used generalised linear mixed models to assess the relationship between all health parameters and site variables. We found the metal-pollution index to have the most significant association with poor body condition. Although parasitism, tail loss and wounds differed among sites, none of these parameters influenced body condition. Additionally, the suite of health parameters suggested differing health status among sites; however, our measure of contemporary landscape urbanisation was never a significant predictor variable. Our results suggest that the health of wetland predators surrounding a rapidly growing city may be offset by higher levels of environmental pollution.
Afficher plus [+] Moins [-]Anthropogenic microfibers are highly abundant at the Burdwood Bank seamount, a protected sub-Antarctic environment in the Southwestern Atlantic Ocean
2022
Di Mauro, Rosana | Castillo, Santiago | Pérez, Analía | Iachetti, Clara M. | Silva, Leonel | Tomba, Juan P. | Chiesa, Ignacio L.
Microplastics debris in the marine environment have been widely studied across the globe. Within these particles, the most abundant and prevalent type in the oceans are anthropogenic microfibers (MFs), although they have been historically overlooked mostly due to methodological constraints. MFs are currently considered omnipresent in natural environments, however, contrary to the Northern Hemisphere, data on their abundance and distribution in Southern Oceans ecosystems are still scarce, in particular for sub-Antarctic regions. Using Niskin bottles we've explored microfibers abundance and distribution in the water column (3–2450 m depth) at the Burdwood Bank (BB), a seamount located at the southern extreme of the Patagonian shelf, in the Southwestern Atlantic Ocean. The MFs detected from filtered water samples were photographed and measured using ImageJ software, to estimate length, width, and the projected surface area of each particle. Our results indicate that small pieces of fibers are widespread in the water column at the BB (mean of 17.4 ± 12.6 MFs.L⁻¹), from which, 10.6 ± 5.3 MFs.L⁻¹ were at the surface (3–10 m depth), 20 ± 9 MFs.L⁻¹ in intermediate waters (41–97 m), 24.6 ± 17.3 MFs.L⁻¹ in deeper waters (102–164 m), and 9.2 ± 5.3 MFs.L⁻¹ within the slope break of the seamount. Approximately 76.1% of the MFs were composed of Polyethylene terephthalate, and the abundance was dominated by the size fraction from 0.1 to 0.3 mm of length. Given the high relative abundance of small and aged MFs, and the oceanographic complexity of the study area, we postulate that MFs are most likely transported to the BB via the Antarctic Circumpolar Current. Our findings imply that this sub-Antarctic protected ecosystem is highly exposed to microplastic pollution, and this threat could be spreading towards the highly productive waters, north of the study area.
Afficher plus [+] Moins [-]Advances and prospects on the aquatic plant coupled with sediment microbial fuel cell system
2022
Li, Benhang | Xu, Dandan | Feng, Li | Liu, Yongze | Zhang, Liqiu
Energy resource scarcity and sediment pollution perniciousness have become enormous challenges, to which research has been focused on energy recovery and recycle technologies to solve both above problems. The organic matter stored in anoxic sediments of freshwater ecosystem represents a tremendous potential energy source. The system of aquatic plant coupled with sediment microbial fuel cell (AP-SMFC) has attracted much attention as a more feasible, economical and eco-friendly way to remediate sediment and surface water and generate electricity. However, the research on AP-SMFC has only been carried out in the last decade, and relevant studies have not been well summarized. In this review, the advances and prospects on AP-SMFC were systematically introduced. Firstly, the annual publication counts and keywords co-occurrence cluster of AP-SMFC were identified and visualized by resorting to the CiteSpace software, and the result showed that the research on AP-SMFC increased significantly in the last decade on the whole and will continue to increase. The bibliometric results provided valuable references and information on potential research directions for future studies. And then, the research progress and reaction mechanism of AP-SMFC were systematically described. Thirdly, the performance of AP-SMFC, including nutrients removal, organic contaminants removal, and electricity generation, was systematically summarized. AP-SMFC can enhance the removal of pollutants and electricity generation compared with SMFC without AP, and is considered to be an ideal technology for pollutants removal and resource recovery. Finally, the current challenges and future perspectives were summarized and prospected. Therefore, the review could serve as a guide for the new entrants to the field and further development of AP-SMFC application.
Afficher plus [+] Moins [-]Critical features identification for chemical chronic toxicity based on mechanistic forecast models
2022
Wang, Xiaoqing | Li, Fei | Chen, Jingwen | Teng, Yuefa | Ji, Chenglong | Wu, Huifeng
Facing billions of tons of pollutants entering the ocean each year, aquatic toxicity is becoming a crucial endpoint for evaluating chemical adverse effects on ecosystems. Notably, huge amount of toxic chemicals at environmental relevant doses can cause potential adverse effects. However, chronic aquatic toxicity effects of chemicals are much scarcer, especially at population level. Rotifers are highly sensitive to toxicants even at chronic low-doses and their communities are usually considered as effective indicators for assessing the status of aquatic ecosystems. Therefore, the no observed effect concentration (NOEC) for population abundance of rotifers were selected as endpoints to develop machine learning models for the prediction of chemical aquatic chronic toxicity. In this study, forty-eight binary models were built by eight types of chemical descriptors combined with six machine learning algorithms. The best binary model was 1D & 2D molecular descriptors – random trees model (RT) with high balanced accuracy (BA) (0.83 for training and 0.83 for validation set), and Matthews correlation coefficient (MCC) (0.72 for training set and 0.67 for validation set). Moreover, the optimal model identified the primary factors (SpMAD_Dzp, AMW, MATS2v) and filtered out three high alerting substructures [c1cc(Cl)cc1, CNCO, CCOP(=S)(OCC)O] influencing the chronic aquatic toxicity. These results showed that the compounds with low molecular volume, high polarity and molecular weight could contribute to adverse effects on rotifers, facilitating the deeper understanding of chronic toxicity mechanisms. In addition, forecast models had better performances than the common models embedded into ECOSAR software. This study provided insights into structural features responsible for the toxicity of different groups of chemicals and thereby allowed for the rational design of green and safer alternatives.
Afficher plus [+] Moins [-]Structural control of the non-ionic surfactant alcohol ethoxylates (AEOs) on transport in natural soils
2021
Espeso, M Botella | Corada-Fernández, C. | García-Delgado, M. | Candela, L. | González-Mazo, E. | Lara-Martín, P.A. | Jiménez-Martínez, J.
Surfactants, after use, enter the environment through diffuse and point sources such as irrigation with treated and non-treated waste water and urban and industrial wastewater discharges. For the group of non-ionic synthetic surfactant alcohol ethoxylates (AEOs), most of the available information is restricted to the levels and fate in aquatic systems, whereas current knowledge of their behavior in soils is very limited. Here we characterize the behavior of different homologs (C12–C18) and ethoxymers (EO3, EO6, and EO8) of the AEOs through batch experiments and under unsaturated flow conditions during infiltration experiments. Experiments used two different agricultural soils from a region irrigated with reclaimed water (Guadalete River basin, SW Spain). In parallel, water flow and chemical transport were modelled using the HYDRUS-1D software package, calibrated using the infiltration experimental data. Estimates of water flow and reactive transport of all surfactants were in good agreement between infiltration experiments and simulations. The sorption process followed a Freundlich isotherm for most of the target compounds. A systematic comparison between sorption data obtained from batch and infiltration experiments revealed that the sorption coefficient (Kd) was generally lower in infiltration experiments, performed under environmental flow conditions, than in batch experiments in the absence of flow, whereas the exponent (β) did not show significant differences. For the low clay and organic carbon content of the soils used, no clear dependence of Kd on them was observed. Our work thus highlights the need to use reactive transport parameterization inferred under realistic conditions to assess the risk associated with alcohol ethoxylates in subsurface environments.
Afficher plus [+] Moins [-]Oxidative stress, metallomics and blood toxicity after subacute low-level lead exposure in Wistar rats: Benchmark dose analyses
2021
Javorac, Dragana | Antonijević, Biljana | Anđelković, Milena | Repić, Aleksandra | Bulat, Petar | Djordjevic, Aleksandra Buha | Baralić, Katarina | Đukić-Ćosić, Danijela | Antonić, Tamara | Bulat, Zorica
Exposure to lead (Pb) is still rising concern worldwide, having in mind that even low-dose exposure can induce various harmful effects. Thus, in-depth knowledge of the targets of Pb toxicity and corresponding mechanisms is essential. In the presented study, the six groups (male Wistar rats, n = 6) received 0.1; 0.5; 1; 3; 7; 15 mg Pb/kg body weight/day for 28 days, each day by oral gavage, while the control group received distilled water only. All animals were sacrificed 24 h after the treatment, and blood was collected for the analysis of hematological, biochemical, oxidative status and essential elements levels. An external and internal dose-response relationship was performed using PROASTweb 70.1 software. The results showed that low doses of Pb affect hematological parameters and lipid profile after 28 days. The possible mechanisms at examined Pb dose levels were a decrease in SOD, O₂•⁻ and Cu and an increase in Zn levels. The dose-dependent nature of changes in cholesterol, HDL cholesterol, O₂.⁻, SOD, AOPP in serum and hemoglobin, Fe, Zn, Cu in blood were obtained in this study. The most sensitive parameters that were alerted are Cu blood levels (BMDL₅: 1.4 ng/kg b.w./day) and SOD activity (BMDL₅: 0.5 μg/kg b.w./day). The presented results provide information that may be useful in further assessing the health risks of low-level Pb exposure.
Afficher plus [+] Moins [-]Numerical analysis and modeling of two-loop experimental setup for measurements of radon diffusion rate through building and insulation materials
2020
Szajerski, Piotr | Zimny, Arkadiusz
Radon is a natural radioactive gas present in the environment, which is considered as the second most important lung cancer cause worldwide. Currently, radon gas is under focus and was classified as contaminant of emerging concern, which is responsible for serious biological/health effects in human. In presented work we propose the numerical model and analysis method for radon diffusion rate measurements and radon transport parameters determination. The experimental setup for radon diffusion was built in a classical, two chamber configuration, in which the radon source and outlet reservoirs are separated by the sample being tested. The main difference with previously known systems is utilization of only one radon detector, what was achieved by a careful characterization of the Rn-222 source and development of a numerical model, which allows for exact determination of radon transport parameters by fitting simulated radon concentration profile in the outlet reservoir to experimental data. For verification of the developed system, several insulation materials commonly used in building industry and civil engineering, as well as, common building materials (gypsum, hardened cement paste, concrete) were tested for radon diffusion rate through these barriers. The results of radon transmittance, permeability and diffusion coefficients for investigated materials are in compliance with values known previously from the literature. The analysis method is fast and efficient, and requires measurement period varying from a dozen or so hours up to 2–3 days depending on material properties. The described method is entirely based on a numerical analysis of the proposed differential equation model using freely available SCILAB software and experimental data obtained during sample measurements.
Afficher plus [+] Moins [-]Hazardous impact of diclofenac exposure on the behavior and antioxidant defense system in Nauphoeta cinerea
2020
Adedara, Isaac A. | Awogbindin, Ifeoluwa O. | Afolabi, Blessing A. | Ajayi, Babajide O. | Rocha, Joao B.T. | Farombi, Ebenezer O.
Environmental pollution by pharmaceuticals such as diclofenac (DCF) is globally acknowledged to be a threat to the ecosystems. Nauphoeta cinerea is an important insect with valuable ecological role. The present investigation aimed to elucidate the impact of DCF on insects by assessing the behavior and antioxidant defense response in nymphs of N. cinerea exposed to DCF-contaminated food at 0, 0.5, 1.0 and 2.0 μg kg⁻¹ feed for 42 successive days. Subsequent to exposure period, neurobehavioral analysis using video-tracking software in a novel apparatus was performed before estimation of biochemical endpoints in the head, midgut and hemolymph of the insects. Results indicated that DCF-exposed insects exhibited marked reduction in the maximum speed, total distance traveled, mobile episodes, total mobile time, body rotation, absolute turn angle and path efficiency, whereas the total freezing time was increased compared with the control. The diminution in the exploratory activities of DCF-exposed insects was substantiated by heat maps and track plots. Additionally, DCF elicited marked diminution in antioxidant enzyme and acetylcholinesterase (AChE) activities along with increase in nitric oxide (NO), reactive oxygen and nitrogen species (RONS), and lipid peroxidation (LPO) levels in the head, midgut and hemolymph of the insects. Taken together, DCF elicited neurotoxicity and oxido-inflammatory stress in exposed insects. N. cinerea may be a suitable model insect for environmental risk assessment of pharmaceuticals in non-target insect species.
Afficher plus [+] Moins [-]Discovery of an arsenic and mercury co-elevation in the Midwest United States using reference laboratory data
2019
Day, Patrick L. | Nelson, Erik J. | Bluhm, Amy M. | Wood-Wentz, Christina M. | Jannetto, Paul J.
This study aimed to determine if there is a co-elevation of human blood arsenic and mercury levels in the Midwestern population of the United States (U.S.) and to determine any geographical patterns and variation of arsenic and mercury that may exist in Michigan. 58,800 blood specimens along with associated demographic/geographic data from the contiguous United States were reviewed. Univariate and multivariable logistic regression were used to analyze demographic/geographic variables associated with elevated arsenic concentrations. Furthermore, blood data from patients in Michigan were aggregated to the ZIP code tabulation area (ZCTA) in order to assess geographic variation using spatial regression models. SaTScan software was also used to analyze potential clustering of arsenic and mercury across Michigan ZCTAs. Within the contiguous United States, elevated mercury blood concentrations, older age, female sex, and coastal status were all associated with elevated arsenic blood concentrations (elevated mercury odds ratio (OR) 3.18 (3.04–3.33); female sex OR 1.06 (1.02–1.11); +10 yr age OR 1.12 (1.11–1.14); coastal state OR 1.33 (1.27–1.40). Within the state of Michigan, as with the continuous U.S., elevated mercury blood concentrations and older age were associated with elevated arsenic blood concentrations (elevated mercury OR 2.75 (2.38–3.18); female sex OR 1.06 (0.95–1.19); +10 yr age OR 1.10 (1.06–1.13). Using spatial regression, it was determined that within Michigan, economic inequality (measured via the Gini coefficient) was also associated with elevated concentrations of mercury in the blood. Clinical reference laboratory data, in conjunction with spatial analysis methods, may enhance our understanding of how elemental exposure affects human health and should be considered for studying how environmental contaminants, socioeconomics and geography affect the health of populations.
Afficher plus [+] Moins [-]Dominant frequency of songs in tropical bird species is higher in sites with high noise pollution
2018
Tolentino, Vitor Carneiro de Magalhães | Baesse, Camilla Queiroz | Melo, Celine de
The structure and organization of acoustic signals arise through evolutionary processes and adaptive pressures on each species. During learning, natural or anthropogenic factors, such as high noise levels in urban areas, pose challenges to acoustic communication in birds. Many species adjust their acoustic signals to higher noise levels by increasing the frequency of vocalizations. The objectives of this study were to compare the dominant frequency of songs among birds dwelling in forest fragments distant from and near to urban areas, establish correlations between the dominant frequency of song and noise levels in these environments and verified the difference of response between oscines, suboscines and non-passerines. We recorded vocalizations of birds between July/2013 and November/2014 in four forest fragments, two of them near and two distant from urban areas. We used Audacity software to measure the dominant frequency. We measured the ambient noise by a calibrated sound pressure level meter in decibels (dBA) in each of the forest fragments. We analyzed 3740 vocalizations of nine tropical bird species. Forest fragments near to urban areas have higher noise levels than more distant forest fragments. Eight of nine studied species presented higher dominant frequencies of songs in forest fragments near to urban areas. Only one species, Myiothlypis flaveola, did not change the dominant frequency of song between the four analyzed forest fragments. The difference in dominant frequency between the forest fragments distant and closer to the urban areas did not vary between oscines, suboscines and non-passerines. Eight tropical birds exhibited higher dominant frequencies of song in forest fragments near urban areas with high level of ambient noise. Oscine, suboscine and non-passerine showed song variations. Bird species that have differences in the vocalization dominant frequency can be used in environmental monitoring and in ethological studies, as they are sensitive to high noise levels.Noise pollution caused by the vehicular traffic and urbanization are correlates with changes in the vocalization of tropical birds in forest fragments.
Afficher plus [+] Moins [-]