Affiner votre recherche
Résultats 1-10 de 97
Organochlorine pesticides in the urban, suburban, agricultural, and industrial soil in South Korea after three decades of ban: Spatial distribution, sources, time trend, and implicated risks
2022
Khuman, Sanjenbam Nirmala | Park, Min-Kyu | Kim, Ho-Joong | Hwang, Seung-Man | Lee, Chang-Ho | Choi, Sung-Deuk
Organochlorine pesticides in soil samples across urban, suburban, agricultural, and industrial sites were analyzed every year between 2013 and 2016 in South Korea. The study aims to understand the residual status, diminution of occurrence from the South Korean environment, and its risk to humans after three decades of the ban. A general decreasing trend of OCPs has been observed over the years. The OCP concentrations were below the guideline values prescribed for soil pollution. Metabolites like p,p’-DDD and endosulfan sulfate contributed a major portion to the total OCP concentration over the years. The agricultural sites showed higher OCP levels than other site types. Compositional profile and diagnostic ratios suggested that the occurrence of DDT and endosulfan residues were due to historical inputs, but those of HCH and chlordane reflect recent usage in some pockets. The calculated incremental lifetime cancer risk was within the safety limit for all age groups across the genders in the majority of the sites. It is evident that the OCP load on soil is decreasing since the ban on usage. However, regular monitoring with a special focus on metabolites can be an effective control measure to regulate and eliminate the contamination of OCPs.
Afficher plus [+] Moins [-]Heavy ozone pollution episodes in urban Beijing during the early summertime from 2014 to 2017: Implications for control strategy
2021
Zhang, Xin | Li, Hong | Wang, Xuezhong | Zhang, Yujie | Bi, Fang | Wu, Zhenhai | Liu, Yuhong | Zhang, Hao | Gao, Rui | Xue, Likun | Zhang, Qingzhu | Chen, Yizhen | Chai, Fahe | Wang, Wenxing
Ground-level ozone (O₃) has become the principal air pollutant in Beijing during recent summers. In this context, an investigation of ambient concentrations and variation characteristics of O₃ and its precursors in May and June from 2014 to 2017 in a typical urban area of Beijing was carried out, and the formation sensitivity and different causes of heavy O₃ pollution (HOP, daily maximum 8-h O₃ (MDA8h O₃)>124 ppbv) were analyzed. The results showed that the monthly assessment values of the O₃ concentrations (the 90ᵗʰ percentile MDA8h O₃ within one month) were highest in May or June from 2014 to 2017, and the values presented an overall increasing trend. During this period, the number of O₃ pollution days (MDA8h O₃ > 75 ppbv) also showed an increasing trend. During the HOP episodes, the concentrations of volatile organic compounds (VOCs), nitrogen oxides (NOX), and carbon monoxide (CO) were higher than their respective mean values in May and June, and the meteorological conditions were more conducive to atmospheric photochemical reactions. The HOP episodes were mainly caused by local photochemical formation. From 2014 to 2017, O₃ formation during the HOP episodes shifted from VOC and NOX mixed-limited to VOC-limited conditions, and O₃ formation was most sensitive to anthropogenic VOCs. Six categories of VOC sources were identified, among which vehicular exhaust contributed the most to anthropogenic VOCs. The VOC concentrations and OFPs of anthropogenic sources have decreased significantly in recent years, indicating that VOC control measures have been effective in Beijing. Nevertheless, NOX concentrations did not show an evident decreasing trend in the same period. Therefore, more attention should be devoted to O₃ pollution control in May and June; control measure adjustments are needed according to the changes in O₃ precursors, and coordinated control of VOCs and NOX should be strengthened in long-term planning.
Afficher plus [+] Moins [-]Severe particulate pollution days in China during 2013–2018 and the associated typical weather patterns in Beijing-Tianjin-Hebei and the Yangtze River Delta regions
2019
Li, Jiandong | Liao, Hong | Hu, Jianlin | Li, Nan
This study examined the spatial and temporal variations of severe particulate pollution days (SPPDs) in China by using observed PM₂.₅ concentrations during April 2013 to February 2018 from the Ministry of Environmental Protection of China. SPPDs were defined as those with observed daily mean PM₂.₅ concentrations larger than 150 μg m⁻³. Observations showed that northern China had the highest number of SPPDs during the studied period. Since 2015, the number of SPPDs in northwestern China is comparable to or even higher than that observed in Beijing-Tianjin-Hebei (BTH). The highest numbers of SPPDs observed within BTH and the Yangtze River Delta (YRD) were 122 (33), 95 (17), 57 (15), 78 (18), and 31 (25) days in 2013, 2014, 2015, 2016, and 2017, respectively, indicating a general decreasing trend as a result of emission reduction measures. SPPDs occurred mainly from November to February in BTH and in December and January in the YRD. The major circulation patterns associated with large-scale SPPDs were analyzed by using principal component analysis. Five typical synoptic weather patterns were identified for BTH. The most dominant weather type (a cold high centered over the Xinjiang and Mongolian regions) for BTH was also responsible for most of the SPPDs in the YRD. These results have important implications for emission control strategies during SPPDs. Emission control measures can be applied once the dominant circulation patterns have been predicted.
Afficher plus [+] Moins [-]New insight of ozone pollution impact from flare emissions of chemical plant start-up operations
2019
Ge, Sijie | Zhang, Jian | Wang, Sujing | Xu, Qiang | Ho, Thomas
Flaring is a common and necessary operation for chemical industries, which is designed to manage dangerous process overpressure scenarios or to release and destroy off-spec products during chemical plant upsets or turnarounds. However, excessive flaring can emit large quantities of VOCs and NOx into the atmosphere, which will cause transient and localized ozone pollution events in the presence of sunlight. The objective of this study was to quantify the impact to regional air-quality due to flare emissions from chemical plant start-up operations through the coupling of dynamic process simulations via Aspen Plus and air-quality simulations via CAMx. Simulation results from case studies have indicated that the corresponding ozone increments can vary significantly from 0.2 ppb to 17.8 ppb under different temporal and spatial factors, including the start-up starting hour, starting day, and plant location. Additional ozone sensitivity simulations have also indicated that the corresponding ozone increments are higher when the plant is located in a VOC-limited area than that in a NOx-limited area. The results from this study have delivered a cost-effective air-quality control practice for plant start-ups with a minimum air-quality impact through selecting the optimal starting time within the allowable ranges. The practice has significant potential to benefit all stakeholders, including environmental agencies, chemical industries, and local communities.
Afficher plus [+] Moins [-]Characteristics and formation mechanisms of winter haze in Changzhou, a highly polluted industrial city in the Yangtze River Delta, China
2019
Ye, Siqi | Ma, Tao | Duan, Fengkui | Li, Hui | He, Kebin | Xia, Jing | Yang, Shuo | Zhu, Lidan | Ma, Yongliang | Huang, Tao | Kimoto, Takashi
Changzhou, an industrial city in the Yangtze River Delta, has been experiencing serious haze pollution, particularly in winter. However, studies pertaining to the haze in Changzhou are very limited, which makes it difficult to understand the characteristics and formation of winter haze in this area, and develop effective control measures. In this study, we carried out continuous online observation of particulate matter, chemical components, and meteorology in Changzhou in February 2017. Our results showed that haze pollution occurred frequently in Changzhou winter and exhibited two patterns: dry haze with low relative humidity (RH) and wet haze with high RH. Water-soluble inorganic ions (SO₄²⁻, NO₃⁻, and NH₄⁺) accounted for ∼52.2% of the PM₂.₅ mass, of which sulfate was dominant in wet haze periods while nitrate was dominant in other periods. With the deterioration of haze pollution, the proportion of nitrate in PM₂.₅ increased, while sulfate proportion increased under wet haze and decreased under dry haze. Dry haze and wet haze appeared under slow north wind and south wind, respectively, and strong north wind or sea breeze scavenged pollution. We found that formation of nitrate occurred rapidly in daytime with high concentrations of odd oxygen (Oₓ = O₃ + NO₂), whereas formation of sulfate occurred rapidly during nighttime with high RH, indicating that photochemistry and heterogeneous reaction were the major formation mechanisms for nitrate and sulfate, respectively. Through the cluster analysis of 36-h backward trajectories, five sources of air masses from three directions were identified. High PM₂.₅ concentrations (84.1 μg m⁻³ on average) usually occurred under the influence of two clusters (46%) from the northwest, indicating that regional transport from northern China aggravated the winter haze pollution in Changzhou. Emission reduction, particularly the mobile sources, and regional joint prevention and control can help to mitigate the winter haze in Changzhou.
Afficher plus [+] Moins [-]Preliminary study of the source apportionment and diversity of microplastics: Taking floating microplastics in the South China Sea as an example
2019
Wang, Teng | Zou, Xinqing | Li, Baojie | Yao, Yulong | Zang, Zheng | Li, Yali | Yu, Wenwen | Wang, Wanzhi
At present, the study of microplastic sources is in a relatively preliminary stage due to the complexity of microplastic features in the environment. Based on a literature review, we developed a source-specific classification system for the quantitative analysis of microplastic sources. The classification system includes ten types of microplastics based on morphology and composition and can identify their main sources and the associated probabilities. To reflect the complexity of types and sources in the regional combination of microplastics, we first propose a microplastic diversity index (D1-D’(MP)). We use the South China Sea as an example to carry out quantitative source analysis and calculate the diversity index. Eight types of microplastics were found, mainly consisting of maritime coatings (type “Gran_coat”) (33.0%) and synthetic fibers (type “Fib_thin”) (29.6%). We also found that the diversity increased with offshore distance. In addition, we partitioned surface microplastics globally according to a two-dimensional microplastic abundance-diversity index. We believe that these indicators can effectively reflect pollution status and ultimately lead to different types of control measures. In the future, additional indicators for the characterization of microplastics must be included in the classification system to establish a one-to-one source analysis system for microplastic characteristics and source apportionment. In general, our study may provide new insights into the establishment of more accurate and quantitative source apportionment techniques and effective pollution control.
Afficher plus [+] Moins [-]Investigating microplastic trophic transfer in marine top predators
2018
Microplastics are highly bioavailable to marine organisms, either through direct ingestion, or indirectly by trophic transfer from contaminated prey. The latter has been observed for low-trophic level organisms in laboratory conditions, yet empirical evidence in high trophic-level taxa is lacking. In natura studies face difficulties when dealing with contamination and differentiating between directly and indirectly ingested microplastics. The ethical constraints of subjecting large organisms, such as marine mammals, to laboratory investigations hinder the resolution of these limitations. Here, these issues were resolved by analysing sub-samples of scat from captive grey seals (Halichoerus grypus) and whole digestive tracts of the wild-caught Atlantic mackerel (Scomber scombrus) they are fed upon. An enzymatic digestion protocol was employed to remove excess organic material and facilitate visual detection of synthetic particles without damaging them. Polymer type was confirmed using Fourier-Transform Infrared (FTIR) spectroscopy. Extensive contamination control measures were implemented throughout. Approximately half of scat subsamples (48%; n = 15) and a third of fish (32%; n = 10) contained 1–4 microplastics. Particles were mainly black, clear, red and blue in colour. Mean lengths were 1.5 mm and 2 mm in scats and fish respectively. Ethylene propylene was the most frequently detected polymer type in both. Our findings suggest trophic transfer represents an indirect, yet potentially major, pathway of microplastic ingestion for any species whose feeding ecology involves the consumption of whole prey, including humans.
Afficher plus [+] Moins [-]Spatial and vertical variations of perfluoroalkyl acids (PFAAs) in the Bohai and Yellow Seas: Bridging the gap between riverine sources and marine sinks
2018
Zhou, Yunqiao | Wang, Tieyu | Li, Qifeng | Wang, Pei | Li, Lei | Chen, Shuqin | Zhang, Yueqing | Kifāyatullāh, K̲h̲ān | Meng, Jing
Perfluoroalkyl acids (PFAAs) are being increasingly reported as emerging contaminants in riverine and marine settings. This study investigated the contamination level and spatial distribution of 17 PFAAs within the depth profile of the Bohai and Yellow Seas using newly detected sampling data from 49 sites (June 29 to July 14, 2016). Moreover, the riverine flux of 11 selected PFAAs in 33 rivers draining into the Bohai and Yellow Seas was estimated from previous studies (2002–2014) in order to establish the relationship between riverine sources and marine sinks. The results showed that the Bohai and Yellow Seas were commonly contaminated with PFAAs: total concentrations of PFAAs in the surface, middle, and bottom zones ranged from 4.55 to 556 ng L−1, 4.61–575 ng L−1, and 4.94–572 ng L−1, respectively. The predominant compounds were PFOA (0.55–449 ng L−1), PFBA (<LOQ-34.5 ng L−1), and PFPeA (<LOQ-54.3 ng L−1), accounting for 10.1–87.0%, 5.2–59.5%, and 0.6–68.6% of the total PFAAs, respectively. In general, the ∑PFAA concentrations showed a slightly decreasing trend with sampling depth. Contamination was particularly severe in Laizhou Bay, fed by the Xiaoqing River and an industrial park known for PFAA production. The total riverine PFAA mass flux into the Bohai and Yellow Seas was estimated to be 72.2 t y−1, of which 94.8% was carried by the Yangtze and Xiaoqing Rivers. As the concentration of short-chain PFAAs begins to rise in seawater, further studies on the occurrence and fate of short-chain PFAAs with special focus on effective control measures would be very timely, particularly in the Xiaoqing River and Laizhou Bay.
Afficher plus [+] Moins [-]Assessment of winter air pollution episodes using long-range transport modeling in Hangzhou, China, during World Internet Conference, 2015
2018
Ni, Zhi-zhen | Luo, Kun | Zhang, Jun-xi | Feng, Rui | Zheng, He-xin | Zhu, Hao-ran | Wang, Jing-fan | Fan, Jian-ren | Gao, Xiang | Cen, Ke-fa
A winter air pollution episode was observed in Hangzhou, South China, during the Second World Internet Conference, 2015. To study the pollution characteristics and underlying causes, the Weather Research and Forecasting with Chemistry model was used to simulate the spatial and temporal evolution of the pollution episode from December 8 to 19, 2015. In addition to scenario simulations, analysis of the atmospheric trajectory and synoptic weather conditions were also performed. The results demonstrated that control measures implemented during the week preceding the conference reduced the fine particulate matter (PM2.5) pollution level to some extent, with a decline in the total PM2.5 concentration in Hangzhou of 15% (7%–25% daily). Pollutant long-range transport, which occurred due to a southward intrusion of strong cold air driven by the Siberia High, led to severe pollution in Hangzhou on December 15, 2015, accounting for 85% of the PM2.5 concentration. This study provides new insights into the challenge of winter pollution prevention in Hangzhou. For adequate pollution prevention, more regional collaborations should be fostered when creating policies for northern China.
Afficher plus [+] Moins [-]Air quality considerations for stormwater green street design
2017
Shaneyfelt, Kathryn M. | Anderson, Andrew R. | Kumar, Prashant | Hunt, W. F. (William Frederick)
Green streets are increasingly being used as a stormwater management strategy to mitigate stormwater runoff at its source while providing other environmental and societal benefits, including connecting pedestrians to the street. Simultaneously, human exposure to particulate matter from urban transportation is of major concern worldwide due to the proximity of pedestrians, drivers, and cyclists to the emission sources. Vegetation used for stormwater treatment can help designers limit the exposure of people to air pollutants. This goal can be achieved through the deliberate placement of green streets, along with strategic planting schemes that maximize pollutant dispersion. This communication presents general design considerations for green streets that combine stormwater management and air quality goals. There is currently limited guidance on designing green streets for air quality considerations; this is the first communication to offer suggestions and advice for the design of green stormwater streets in regards to their effects on air quality. Street characteristics including (1) the width to height ratio of the street to the buildings, (2) the type of trees and their location, and (3) any prevailing winds can have an impact on pollutant concentrations within the street and along sidewalks. Vegetation within stormwater control measures has the ability to reduce particulate matter concentrations; however, it must be carefully selected and placed within the green street to promote the dispersion of air flow.
Afficher plus [+] Moins [-]