Affiner votre recherche
Résultats 1-5 de 5
The impacts of γ-Fe2O3 and Fe3O4 nanoparticles on the physiology and fruit quality of muskmelon (Cucumis melo) plants
2019
Iron fertilizers are worthy to be studied due to alleviate the Fe deficiency. Different forms of iron oxide nanoparticles are selected to better understand possible particle applications as an Fe source for crop plants. In this study, we assessed the different effects of γ-Fe2O3 and Fe3O4 NPs on the physiology and fruit quality of muskmelon plants in a pot experiment for five weeks. Results showed that no increased iron content was found under NPs treatment in root, stem, leaf and fruit, except 400 mg/L Fe3O4 NPs had a higher iron content in muskmelon root. With the extension of NPs exposure, both γ-Fe2O3 and Fe3O4 NPs began to promote plant growth. In addition, γ-Fe2O3 and Fe3O4 NPs could increase chlorophyll content at a certain stage of exposure. Happily, 200 mg/L γ-Fe2O3 NPs and 100, 200 mg/L Fe3O4 NPs significantly increased fruit weight of muskmelon by 9.1%, 9.4% and 11.5%. It is noteworthy that both γ-Fe2O3 and Fe3O4 NPs caused positive effects on VC content, particularly 100 mg/L Fe3O4 NPs increased the VC content by 46.95%. To the best of our knowledge, little research has been done on the effect of nanoparticles on the whole physiological cycle and fruit quality of melon. The assessment of physiology and fruit quality of muskmelon plants in vitro upon γ-Fe2O3 and Fe3O4 NPs exposure could lay a foundation for NPs potential impact at every growth period of muskmelon plants.
Afficher plus [+] Moins [-]Botanical and synthetic pesticides alter the flower visitation rates of pollinator bees in Neotropical melon fields
2019
Tschoeke, Paulo Henrique | Oliveira, Eugênio E. | Dalcin, Mateus S. | Silveira-Tschoeke, Marcela Cristina A.C. | Sarmento, Renato A. | Santos, Gil Rodrigues
The ecological and economic contributions of pollinator bees to agricultural production have been threatened by the inappropriate and excessive use of pesticides. These pesticides are often applied in areas with ecological peculiarities (e.g., the Neotropical savannah-like region termed as Cerrado) that were not considered during the product development. Here, we conducted field experiments with melon (i.e., Cucumis melo L.) plants cultivated under Brazilian Cerrado conditions and evaluated the impacts of botanical (i.e., neem-based insecticide) and synthetic (i.e., the pyrethroid insecticide deltamethrin and the fungicides thiophanate-methyl and chlorothalonil) pesticides on the flower visitation rates of naturally occurring pollinator bees. Our results revealed that both honey bees (i.e., Apis mellifera L.) and non-Apis bees visited melon flowers and the intensity of bee visitation was moderately correlated with yield parameters (e.g., number of marketable fruits and fruit yield). Pesticide treatments differentially affected bee species. For instance, Plebeia sp. bees were not affected by any pesticide treatment, whereas both A. mellifera and Halictus sp. bees showed reduced visitation intensity after the application of deltamethrin or neem-based insecticides. Fungicide treatment alone did not influence the bee's visitation intensity. Deltamethrin-treated melon fields produced significantly lighter marketable fruits, and the melon yield was significantly lower in melon fields treated with the neem-based insecticide. Thus, our findings with such pollinator bees reinforce the idea that field applications of botanical pesticides may represent as risky as the applications of synthetic compounds, indicating that these alternative products should be submitted to risk assessments comparable to those required for synthetic products.
Afficher plus [+] Moins [-]Physiological effects of ozone on cultivars of watermelon (Citrullus lanatus) and muskmelon (Cucumis melo) widely grown in Spain
1993
Fernandez-Bayon, J.M. | Barnes, J.D. | Ollerenshaw, J.H. | Davison, A.W. (Department of Agricultural and Environmental Science, Faculty of Agriculture and Biological Sciences, Ridley Building, University of Newcastle, Newcastle upon Tyne NE1 7RU (United Kingdom))
Heavy Metals Behavior in the Presence of Organic Acids and Proteins in the Rhizosphere and Plant Tissues of Yellow Melon var. Natal (Cucumis melo L.) Cultivated in a Quartzarenic Neosol
2020
Irias Zelaya, Carlos Roberto | Gadelha, Janine Colares | Hernandez, Fernando Felipe Ferreyra | Ortiz Escobar, Maria Eugenia
We propose to identify the influence of organic acids as well as total proteins in the accumulation and translocation of heavy metals from the rhizosphere to the plant organs of cultivated yellow melon var. Natal throughout the vegetative cycle. Physical and chemical attributes and the concentration of Cu, Zn, and Pb were determined in soil samples. Samples of plant tissue and rhizosphere at 0, 15, 30, 45, and 60 days after transplantation were collected and determined the concentration of heavy metals along with the content of total protein in the tissues and organic acids in the rhizosphere. Subsequently, the transfer factor (TF) and bioconcentration factor (BF) were calculated. Oxalic and citric acids and heavy metal contents were slightly higher in the rhizosphere than those found in the soil. The organic acids and total protein showed correlations with the concentration of heavy metals in different organs of the plant. The protein content in the plant tissues and the contents of oxalic and citric acid released by the plant in the rhizosphere can increase or decrease the absorption, accumulation, and translocation of Cu, Zn, and Pb in the different organs of the yellow melon var. Natal. Even the BF and TF showed values higher than one, being indicative of phytoextraction potential in several stages of the vegetative cycle for Cu and Zn, the yellow melon var. Natal cannot be considered as a hyperaccumulator plant for not meeting all necessary criteria for that purpose.
Afficher plus [+] Moins [-]Dissipation kinetics, pre-harvest residue limits, and hazard quotient assessments of pesticides flubendiamide and fluopicolide in Korean melon (Cucumis melo L. var. makuwa) grown under regulated conditions in plastic greenhouses
2017
Kabir, MdHumayun | Abd El-Aty, A.M. | Rahman, MdMusfiqur | Kim, Sung-woo | Lee, HanSol | Chung, HyungSuk | Do, JungAh | Jeong, JiHoon | Chang, Byung-Joon | Chang, MoonIk | Shin, H.-C. (Ho-Chul) | Shim, Jae-Han
The dissipation kinetics, pre-harvest residue limits, and hazard quotient (HQ) assessments of the pesticides flubendiamide and fluopicolide were conducted for Korean melon (Cucumis melo L. var. makuwa) cultivated at two different sites. A single extraction and cleanup procedure was carried out using acetone (partitioned with dichloromethane) and amino solid-phase extraction cartridges, respectively. Residue analysis was performed by HPLC with ultraviolet detection. Both pesticides showed excellent linearity with correlation coefficients of 0.9999 and 0.9996 for flubendiamide and fluopicolide, respectively. The accuracy (expressed as recovery %) at three spiking levels was 92.0–103.6 and 82.8–105.3%, and the precision (expressed as relative standard deviation) was 1.7–3.4 and 2.7–5.3% for flubendiamide and fluopicolide, respectively. The initial residues of flubendiamide/fluopicolide were 0.326/0.376 and 0.206/0.298 mg/kg at sites 1 and 2, respectively. These amounts were substantially lower than the maximum residue limits (MRLs = 1 and 0.5 mg/kg for flubendiamide and fluopicolide, respectively) established by the Korean Ministry of Food and Drug Safety. The half-lives of flubendiamide were 5.8 and 6.5 days, and those of fluopicolide were 6.7 and 9.1 days at sites 1 and 2, respectively. The shorter half-lives were attributed to seasonal variations (higher temperatures) and enzymatic and metabolic profiling. The risk assessment HQs of flubendiamide were 0.217/0.249 on day 0, which decreased to 0.102/0.168 on day 5, and to 0.065/0.88 on day 10; the HQ values for fluopicolide were 0.029/0.042, 0.022/0.025, and 0.010/0.019 on day 0, day 5, and day 10, for sites 1/2, respectively. From this data, we concluded that the fruits could be consumed safely.
Afficher plus [+] Moins [-]