Affiner votre recherche
Résultats 1-10 de 64
Sodium hydrosulfite together with silicon detoxifies arsenic toxicity in tomato plants by modulating the AsA-GSH cycle Texte intégral
2022
Kaya, Cengiz | Ashraf, Muhammad
The main intent of the current research was to appraise if combined application of hydrogen sulfide (H₂S, 0.2 mM) and silicon (Si 2.0 mM) could improve tolerance of tomato plants to arsenic (As as sodium hydrogen arsenate heptahydrate, 0.2 mM) stress. Plant growth, chlorophylls (Chl), PSII maximum efficiency (Fv/Fm), H₂S concentration and L-cysteine desulfhydrase activity were found to be suppressed, but leaf and root As, leaf proline content, phytochelatins, malondialdehyde (MDA) and H₂O₂ as well as the activity of lipoxygenase (LOX) increased under As stress. H₂S and Si supplied together or alone enhanced the concentrations of key antioxidant biomolecules such as ascorbic acid, and reduced glutathione and the activities of key antioxidant system enzymes including catalase (CAT), superoxide dismutase (SOD), dehydroascorbate reductase (DHAR), glutathione reductase (GR), and glutathione S-transferase (GST). In comparison with individual application of H₂S or Si, the joint supplementation of both had better effect in improving growth and key biochemical processes, and reducing tissue As content, suggesting a putative collaborative role of both molecules in improving tolerance to As-toxicity in tomato plants.
Afficher plus [+] Moins [-]Interplay between arsenic and selenium biomineralization in Shewanella sp. O23S Texte intégral
2022
Staicu, Lucian C. | Wójtowicz, Paulina J. | Molnár, Zsombor | Ruiz-Agudo, Encarnación | Gallego, José Luis R. | Baragaño, Diego | Pósfai, Mihály
Bacteria play crucial roles in the biogeochemical cycle of arsenic (As) and selenium (Se) as these elements are metabolized via detoxification, energy generation (anaerobic respiration) and biosynthesis (e.g. selenocysteine) strategies. To date, arsenic and selenium biomineralization in bacteria were studied separately. In this study, the anaerobic metabolism of As and Se in Shewanella sp. O23S was investigated separately and mixed, with an emphasis put on the biomineralization products of this process. Multiple analytical techniques including ICP-MS, TEM-EDS, XRD, Micro-Raman, spectrophotometry and surface charge (zeta potential) were employed. Shewanella sp. O23S is capable of reducing selenate (SeO₄²⁻) and selenite (SeO₃²⁻) to red Se(-S)⁰, and arsenate (AsO₄³⁻) to arsenite (AsO₃³⁻). The release of H₂S from cysteine led to the precipitation of AsS minerals: nanorod AsS and granular As₂S₃. When As and Se oxyanions were mixed, both As–S and Se(-S)⁰ biominerals were synthesized. All biominerals were extracellular, amorphous and presented a negative surface charge (−24 to −38 mV). Kinetic analysis indicated the following reduction yields: SeO₃²⁻ (90%), AsO₄³⁻ (60%), and SeO₄²⁻ (<10%). The mix of SeO₃²⁻ with AsO₄³⁻ led to a decrease in As removal to 30%, while Se reduction yield was unaffected (88%). Interestingly, SeO₄²⁻ incubated with AsO₄³⁻ boosted the Se removal (71%). The exclusive extracellular formation of As and Se biominerals might indicate an extracellular respiratory process characteristic of various Shewanella species and strains. This is the first study documenting a complex interplay between As and Se oxyanions: selenite decreased arsenate reduction, whereas arsenate stimulated selenate reduction. Further investigation needs to clarify whether Shewanella sp. O23S employs multi-substrate respiratory enzymes or separate, high affinity enzymes for As and Se oxyanion respiration.
Afficher plus [+] Moins [-]Detoxification of ionic liquids using glutathione, cysteine, and NADH: Toxicity evaluation by Tetrahymena pyriformis Texte intégral
2021
Cui, Yin Hua | Shi, Qing Shan | Zhang, Dan Dan | Wang, Lingling | Feng, Jin | Chen, Yi-Wen | Xie, Xiao Bao
Ionic liquids (ILs), also known as green solvents, are widely acknowledged in several fields, such as chemical separation, synthesis, and electrochemistry, owing to their excellent physiochemical properties. However, their poor biodegradability may lead to environmental and health risks, posing a severe threat to humans, thus requiring further research. In this study, the biotoxicities of the imidazolium-based ILs were evaluated in Tetrahymena pyriformis. Moreover, IL detoxification was investigated by addition of glutathione (GSH), cysteine, and nicotinamide adenine dinucleotide (NADH). Reactive oxygen species (ROS) initiated by different IL types caused damage to Tetrahymena, while glutathione, cysteine, and NADH eliminated ROS, achieving the detoxification purposes. Detoxification results showed that NADH exhibited the best detoxification ability, followed by glutathione and cysteine. Finally, RT-PCR results suggested that metallothionein might have participated in IL detoxification.
Afficher plus [+] Moins [-]Influence of fuel oil on Platymonas helgolandica: An acute toxicity evaluation to amino acids Texte intégral
2021
Li, Na | Liu, Yu | Liang, Zhengyu | Lou, Yadi | Liu, Yuxin | Zhao, Xinda | Wang, Guoguang
It is highly likely that the toxicity of water accommodated fractions (WAF) will influence marine microalgae, and consequently lead to potential risk for the marine ecological environment. However, it was often neglected whether WAF can influence the transformation of relative compounds in organisms. The metabolism of amino acids (AAs) can be used to track physiological changes in microalgae because amino acids are the basis of proteins and enzymes. In this study, using marine Chlorophyta Platymonas helgolandica as the test organism, the effects of different concentrations of WAF on AA compositions and stable carbon isotope ratios (δ¹³C) of individual AAs of Platymonas helgolandica were investigated. The results showed that the WAF of #180 fuel oil had an obvious suppressing effect on the growth and chlorophyll a content of microalgae. The growth inhibitory rate at 96 h was 80.66% at a WAF concentration of 0.50 mg L⁻¹ compared with the control. Furthermore, seven among the 16 AAs, including alanine, cysteine, proline, aspartic acid, lysine, histidine and tyrosine, had relatively high abundance. Under the glycolysis pathway, the cysteine abundance was higher than control, meaning that the biosynthesized pathway of alanine through cysteine as a precursor could be damaged. Phosphoenolpyruvate (PEP) was an important synthesis precursor of alanine (leucine) and aromatic AA family (Phenylalanine and tyrosine), and played an important role in δ¹³CAAₛ fractionation under the WAF stress. Under the TCA pathway, to protect cell metabolism activities under WAF stress, the δ¹³C value of threonine and proline abundance in microalgae with the increase in WAF stress. Therefore, δ¹³CAAₛ fractionation can be used as a novel method for toxicity evaluation of WAF on future.
Afficher plus [+] Moins [-]Molecular mechanism of zero valent iron-enhanced microbial azo reduction Texte intégral
2021
Fang, Yun | Chen, Xingjuan | Zhong, Yin | Yang, Yonggang | Liu, Fei | Guo, Jun | Xu, Meiying
Zero valent iron (ZVI)–microbe technology has an increasing application on the removal of organic pollution, yet the molecular mechanism of microbe respond to ZVI is still a mystery. Here, we established a successive ZVI-enhanced microbial system to remove azo dye (a typical organic pollutant) by Shewanella decolorationis S12 (S. decolorationis S12, an effective azo dye degradation bacterium) and examined the gene expression time course (10, 30, 60, and 120 min) by whole genome transcriptional analysis. The addition of ZVI to the microbial degradation system increases the rate of azo reduction from ~60% to over 99% in 16 h reaction, suggesting the synergistic effect of ZVI and S12 on azo dye degradation. Comparing with the treatment without ZVI, less filamentous cells were observed in ZVI treated system, and approximately 8% genes affiliated with 10 different gene expression profiles in S. decolorationis S12 were significantly changed in 120 min during the ZVI-enhanced azo reduction. Intriguingly, MarR transcriptional factor might play a vital role in regulating ZVI-enhanced azo reduction in the aspect of energy production, iron homeostasis, and detoxification. Further investigation showed that the induced [Ni–Fe] H₂ase genes (hyaABCDEF) and azoreductase genes (mtrABC-omcA) contributed to ZVI-enhanced energy production, while the reduced iron uptake (hmuVCB and feoAB), induced sulfate assimilation (cysPTWA) and cysteine biosynthesis (cysM) related genes were essential to iron homeostasis and detoxification. This study disentangles underlying mechanisms of ZVI-enhanced organic pollution biotreatment in S. decolorationis S12.
Afficher plus [+] Moins [-]Abscisic acid priming regulates arsenite toxicity in two contrasting rice (Oryza sativa L.) genotypes through differential functioning of sub1A quantitative trait loci Texte intégral
2021
Saha, Indraneel | Hasanuzzaman, Mirza | Adak, Malay Kumar
Arsenite [As(III)] toxicity causes impeded growth, inadequate productivity of plants and toxicity through the food chain. Using various chemical residues for priming is one of the approaches in conferring arsenic tolerance in crops. We investigated the mechanism of abscisic acid (ABA)-induced As(III) tolerance in rice genotypes (cv. Swarna and Swarna Sub1) pretreated with 10 μM of ABA for 24 h and transferred into 0, 25 and 50 μM arsenic for 10 days. Plants showed a dose-dependent bioaccumulation of As(III), oxidative stress indicators like superoxide, hydrogen peroxide, thiobarbituric acid reactive substances and the activity of lipoxygenase. As(III) had disrupted cellular redox that reflecting growth indices like net assimilation rate, relative growth rate, specific leaf weight, leaf mass ratio, relative water content, proline, delta-1-pyrroline-5-carboxylate synthetase and electrolyte leakage. ABA priming was more protective in cv. Swarna Sub1 than Swarna for retrieval of total glutathione pool, non-protein thiols, cysteine, phytochelatin and glutathione reductase. Phosphate metabolisms were significantly curtailed irrespective of genotypes where ABA had moderated phosphate uptake and its metabolizing enzymes like acid phosphatase, alkaline phosphatase and H⁺/ATPase. Rice seedlings had regulated antioxidative potential with the varied polymorphic expression of those enzymes markedly with antioxidative enzymes. The results have given the possible cellular and physiological traits those may interact with ABA priming in the establishment of plant tolerance with As(III) over accumulation and, thereby, its amelioration for oxidative damages. Finally, cv. Swarna Sub1 was identified as a rice genotype as a candidate for breeding program for sustainability against As(III) stress with cellular and physiological traits serving better for selection pressure.
Afficher plus [+] Moins [-]The interaction of mercury and methylmercury with chalcogenide nanoparticles Texte intégral
2019
Wang, Xudong | Seelen, Emily | Mazrui, Nashaat | Kerns, Peter | Suib, Steven L. | Zhao, Jing | Mason, Robert
Mercury (Hg) and methylmercury (CH3Hg) bind strongly to micro and nano (NP) particles and this partitioning impacts their fate and bioaccumulation into food webs, and, as a result, potential human exposure. This partitioning has been shown to influence the bioavailability of inorganic Hg to methylating bacteria, with NP-bound Hg being more bioavailable than particulate HgS, or organic particulate-bound Hg. In this study we set out to investigate whether the potential interactions between dissolved ionic Hg (HgII) and CH3Hg and NPs was due to incorporation of Hg into the core of the cadmium selenide and sulfide (CdSe; CdS) nanoparticles (metal exchange or surface precipitation), or due purely to surface interactions. The interaction was assessed based on the quenching of the fluorescence intensity and lifetime observed during HgII or CH3Hg titration experiments of these NP solutions. Additional analysis using inductively coupled plasma mass spectrometry of CdSe NPs and the separated solution, obtained after HgII additions, showed that there was no metal exchange, and X-ray photoelectron spectroscopy confirmed this and further indicated that the Hg was bound to cysteine, the NP capping agent. Our study suggests that Hg and CH3Hg adsorbed to the surfaces of NPs would have different bioavailability for release into water or to (de)methylating organisms or for bioaccumulation, and provides insights into the behavior of Hg in the environment in the presence of natural or manufactured NPs.
Afficher plus [+] Moins [-]Toxicity of perfluorooctane sulfonate and perfluorooctanoic acid to Escherichia coli: Membrane disruption, oxidative stress, and DNA damage induced cell inactivation and/or death Texte intégral
2016
Liu, Gesheng | Zhang, Shuai | Yang, Kun | Zhu, Lizhong | Lin, Daohui
Perfluorooctane sulfonate (PFOS) and perfluorooctanoic acid (PFOA) are two widely used polyfluorinated compounds (PFCs) and are persistent in the environment. This study for the first time systematically investigated their toxicities and the underlying mechanisms to Escherichia coli. Much higher toxicity was observed for PFOA than PFOS, with the 3 h half growth inhibition concentrations (IC50) determined to be 10.6 ± 1.0 and 374 ± 3 mg L−1, respectively, while the bacterial accumulation of PFOS was much greater than that of PFOA. The PFC exposures disrupted cell membranes as evidenced by the dose-dependent variations of cell structures (by transmission electron microscopy observations), surface properties (electronegativity, hydrophobicity, and membrane fluidity), and membrane compositions (by gas chromatogram and Fourier transform infrared spectroscopy analyses). The increases in the contents of intracellular reactive oxygen species (ROS) and malondialdehyde and the activity of superoxide dismutase indicated the increment of oxidative stress induced by the PFCs in the bacterial cells. The fact that the cell growth inhibition was mitigated by the addition of ROS scavenger (N-acetyl cysteine) further evidenced the important role of oxidative damage in the toxicities of PFOS and PFOA. Eighteen genes involved in cell division, membrane instability, oxidative stress, and DNA damage of the exposed cells were up or down expressed, indicating the DNA damage by the PFCs. The toxicities of PFOS and PFOA to E. coli were therefore ascribed to the membrane disruption, oxidative stress, and DNA damage induced cell inactivation and/or death. The difference in the bactericidal effect between PFOS and PFOA was supposed to be related to their different dominating toxicity mechanisms, i.e., membrane disruption and oxidative damage, respectively. The outcomes will shed new light on the assessment of ecological effects of PFCs.
Afficher plus [+] Moins [-]Chromium in plant growth and development: Toxicity, tolerance and hormesis Texte intégral
2022
López-Bucio, Jesús Salvador | Ravelo-Ortega, Gustavo | López-Bucio, José
Research over the last three decades showed that chromium, particularly the oxyanion chromate Cr(VI) behaves as a toxic environmental pollutant that strongly damages plants due to oxidative stress, disruption of nutrient uptake, photosynthesis and metabolism, and ultimately, represses growth and development. However, mild Cr(VI) concentrations promote growth, induce adventitious root formation, reinforce the root cap, and produce twin roots from single root meristems under conditions that compromise cell viability, indicating its important role as a driver for root organogenesis. In recent years, considerable advance has been made towards deciphering the molecular mechanisms for root sensing of chromate, including the identification of regulatory proteins such as SOLITARY ROOT and MEDIATOR 18 that orchestrate the multilevel dynamics of the oxyanion. Cr(VI) decreases the expression of several glutamate receptors, whereas amino acids such as glutamate, cysteine and proline confer protection to plants from hexavalent chromium stress. The crosstalk between plant hormones, including auxin, ethylene, and jasmonic acid enables tissues to balance growth and defense under Cr(VI)-induced oxidative damage, which may be useful to better adapt crops to biotic and abiotic challenges. The highly contrasting responses of plants manifested at the transcriptional and translational levels depend on the concentration of chromate in the media, and fit well with the concept of hormesis, an adaptive mechanism that primes plants for resistance to environmental challenges, toxins or pollutants. Here, we review the contrasting facets of Cr(VI) in plants including the cellular, hormonal and molecular aspects that mechanistically separate its toxic effects from biostimulant outputs.
Afficher plus [+] Moins [-]Diesel exhaust particles distort lung epithelial progenitors and their fibroblast niche Texte intégral
2022
Wu. Xinhui, | Ciminieri, Chiara | Bos, I. Sophie T. | Woest, Manon E. | D'Ambrosi, Angela | Wardenaar, René | Spierings, Diana C.J. | Königshoff, Melanie | Schmidt, Martina | Kistemaker, Loes E.M. | Gosens, Reinoud
Chronic obstructive pulmonary disease (COPD) is a progressive lung disease characterized by inflammation and impaired tissue regeneration, and is reported as the fourth leading cause of death worldwide by the Centers for Disease Control and Prevention (CDC). Environmental pollution and specifically motor vehicle emissions are known to play a role in the pathogenesis of COPD, but little is still known about the molecular mechanisms that are altered following diesel exhaust particles (DEP) exposure. Here we used lung organoids derived from co-culture of alveolar epithelial progenitors and fibroblasts to investigate the effect of DEP on the epithelial-mesenchymal signaling niche in the distal lung, which is essential for tissue repair. We found that DEP treatment impaired the number as well as the average diameter of both airway and alveolar type of lung organoids. Bulk RNA-sequencing of re-sorted epithelial cells and fibroblasts following organoid co-culture shows that the Nrf2 pathway, which regulates antioxidants' activity, was upregulated in both cell populations in response to DEP; and WNT/β-catenin signaling, which is essential to promote epithelial repair, was downregulated in DEP-exposed epithelial cells. We show that pharmacological treatment with anti-oxidant agents such as N-acetyl cysteine (NAC) or Mitoquinone mesylate (MitoQ) reversed the effect of DEP on organoids growth. Additionally, a WNT/β-catenin activator (CHIR99021) successfully restored WNT signaling and promoted organoid growth upon DEP exposure. We propose that targeting oxidative stress and specific signaling pathways affected by DEP in the distal lung may represent a strategy to restore tissue repair in COPD.
Afficher plus [+] Moins [-]