Affiner votre recherche
Résultats 1-6 de 6
Statistical analysis of nitrous oxide emission factors from pastoral agriculture field trials conducted in New Zealand
2014
Kelliher, F.M. | Cox, N. | van der Weerden, T.J. | de Klein, C.A.M. | Luo, J. | Cameron, K.C. | Di, H.J. | Giltrap, D. | Rys, G.
Between 11 May 2000 and 31 January 2013, 185 field trials were conducted across New Zealand to measure the direct nitrous oxide (N2O) emission factors (EF) from nitrogen (N) sources applied to pastoral soils. The log(EF) data were analysed statistically using a restricted maximum likelihood (REML) method. To estimate mean EF values for each N source, best linear unbiased predictors (BLUPs) were calculated. For lowland soils, mean EFs for dairy cattle urine and dung, sheep urine and dung and urea fertiliser were 1.16 ± 0.19% and 0.23 ± 0.05%, 0.55 ± 0.19% and 0.08 ± 0.02% and 0.48 ± 0.13%, respectively, each significantly different from one another (p < 0.05), except for sheep urine and urea fertiliser. For soils in terrain with slopes >12°, mean EFs were significantly lower. Thus, urine and dung EFs should be disaggregated for sheep and cattle as well as accounting for terrain.
Afficher plus [+] Moins [-]Methane emissions from a dairy feedlot during the fall and winter seasons in Northern China
2011
Gao, Zhiling | Yuan, Huijun | Ma, Wenqi | Liu, Xuejun | Desjardins, R.L.
Accurately determining methane emission factors of dairy herd in China is imperative because of China’s large population of dairy cattle. An inverse dispersion technique in conjunction with open-path lasers was used to quantify methane emissions from a dairy feedlot during the fall and winter seasons in 2009–2010. The methane emissions had a significant diurnal pattern during both periods with three emission peaks corresponding to the feeding schedule. A 10% greater emission rate in the fall season was obtained most likely by the higher methane emission from manure during that period. An annual methane emission rate of 109 ± 6.7 kg CH₄ yr⁻¹ characterized with a methane emission intensity of 32.3 ± 1.59 L CH₄ L⁻¹ of milk and a methane conversion factor (Yₘ) of 7.3 ± 0.38% for mature cattle was obtained, indicating the high methane emission intensity and low milk productivity in Northern China.
Afficher plus [+] Moins [-]Epidemiological study on Listeria monocytogenes in Egyptian dairy cattle farms’ insights into genetic diversity of multi-antibiotic-resistant strains by ERIC-PCR
2022
Elsayed, Mona M. | Elkenany, Rasha M. | Zakaria, Amira I. | Badawy, Basma M.
Listeria monocytogenes (L. monocytogenes) is frequently detected in ruminants, especially dairy cattle, and associated with the sporadic and epidemic outbreak of listeriosis in farms. In this epidemiological study, the prevalence, virulence, antibiotic resistance profiles, and genetic diversity of L. monocytogenes in three Egyptian dairy cattle farms were investigated. The risk factors associated with the fecal shedding of L. monocytogenes were analyzed. The L. monocytogenes strains from the three farms were categorized into distinct genotypes based on sampling site and sample type through enterobacterial repetitive intergenic consensus polymerase chain reaction (ERIC-PCR). A total of 1896 samples were collected from animals, environments, and milking equipment in the three farms. Results revealed that 137 (7.23%) of these samples were L. monocytogenes positive. The prevalence of L. monocytogenes in the animal samples was high (32.1%), and the main environmental source of prevalent genotypes in the three farms was silage. For all sample types, L. monocytogenes was more prevalent in farm I than in farms II and III. Risk factor analysis showed seasonal variation in production hygiene. For all sample types, L. monocytogenes was significantly more prevalent in winter than in spring and summer. The level of L. monocytogenes fecal shedding was high likely because of increasing age, number of parities, and milk yield in dairy cattle. Two virulence genes, namely, hlyA & prfA, were also detected in 93 strains, whereas only one of these genes was found in 44 residual strains. Conversely, iap was completely absent in all strains. The strains exhibited phenotypic resistance to most of the tested antibiotics, but none of them was resistant to netilmicin or vancomycin. According to sample type, the strains from the animal samples were extremely resistant to amoxicillin (95.2%, 80/84) and cloxacillin (92.9%, 78/84). By comparison, the strains from the environmental samples were highly resistant to cefotaxime (86.95%, 20/23). Furthermore, 25 multi-antibiotic resistance (MAR) patterns were observed in L. monocytogenes strains. All strains had a MAR index of 0.22–0.78 and harbored antibiotic resistance genes, including extended-spectrum β-lactamase (blaCTX-M [92.7%] and blaDHA-1 [66.4%]), quinolones (qnrS [91.2%], qnrA [58.4%], parC [58.4%], and qnrB [51%]), macrolides (erm[B] [76.6%], erm(C) [1.5%], and msr(A) [27%]), trimethoprim (dfrD [65.7%]), and tetracyclines (tet(M) [41.6%], tet(S) [8%], and int-Tn [26.3%]). ERIC-PCR confirmed that the strains were genetically diverse and heterogeneous. A total of 137 isolated L. monocytogenes strains were classified into 22 distinct ERIC-PCR groups (A–V). Among them, ERIC E (10.2%) was the most prevalent group. These results indicated that environment and milking equipment served as reservoirs and potential transmission ways of virulent and multidrug-resistant L. monocytogenes to dairy animals, consequently posing threats to public health. Silage is the main environmental source of prevalent genotypes on all three farms. Therefore, hygienic measures at the farm level should be developed and implemented to reduce L. monocytogenes transmission inside dairy cattle farms.
Afficher plus [+] Moins [-]Cointegrated land use and CO2 emissions—the silent Columbian cattle revolution
2021
Patiño-Domínguez, David Roberto | de Oliveira, Nadja Simone Menezes Nery | Mourao, Paulo Reis
The objective of this research is to discuss the relationship between the growth of livestock and the environmental impact it generates in Colombia. For this, data were extracted from the FAO STAT for the period of 1961 to 2017. The livestock inventory has had a significant growth during the last 50 years. This has generated environmental exposure and the release of carbon, sequestered by continuous deforestation performed in the practice of extensive livestock. Recurring to vector error correction models, we observed the existence of long-term relations between CO₂ emissions from dairy cattle and emissions from slaughtered cattle, deforestation, pastures, and forest development. Changes in CO₂ emissions from dairy cattle tend to be anticipated by changes in CO₂ emissions from the other analyzed sources, which prove how the current investment in dairy cattle results from the accumulated debates in Colombia regarding the different sources of livestock emissions.
Afficher plus [+] Moins [-]Environmental efficiency of Saccharomyces cerevisiae on methane production in dairy and beef cattle via a meta-analysis
2019
Darabighane, Babak | Salem, Abdelfattah Zeidan Mohamed | Mirzaei Aghjehgheshlagh, Farzad | Mahdavī, ʻAlī | Zarei, Abolfazl | Elghandour, Mona Mohamed Mohamed Yasseen | López, Secundino
The objective of the present study is to examine the effect of yeast (Saccharomyces cerevisiae) on reduction of methane (CH₄) production in dairy and beef cattle using meta-analytic methods. After compilation of relevant scientific publications available from the literature between 1990 and 2016, and applying exclusion and inclusion criteria, meta-analyses of data from dairy and beef cattle were applied for the pooled dataset or for each animal category (dairy or beef). The results of meta-analysis of all three datasets (all cattle, dairy cattle, or beef cattle) suggested that effect size of yeast either on daily CH₄ production or on CH₄ production per dry matter intake (CH₄/DMI) was not significant. The results of Q test and I² statistic suggest that there is no heterogeneity between different studies on CH₄ production and CH₄/DMI. The results of meta-analysis suggest that use of yeast (Saccharomyces cerevisiae) as feed additive does not offer significant results in terms of reduction of CH₄ production in dairy and beef cattle. Further research on the effects of different doses of yeast, use of yeast products, different strains, and experimental designs is warranted to elucidate the effects of yeasts on methane production in the rumen.
Afficher plus [+] Moins [-]State of the art for animal wastewater treatment in constructed wetlands
2001
Hunt, P.G. | Poach, M.E.
Although confined animal production generates enormous per-unit-area quantities of waste, wastewater from dairy and swine operations has been successfully treated in constructed wetlands. However, solids removal prior to wetland treatment is essential for long-term functionality. Plants are an integral part of wetlands; cattails and bulrushes are commonly used in constructed wetlands for nutrient uptake, surface area, and oxygen transport to sediment. Improved oxidation and nitrification may also be obtained by the use of the open water of marsh-pond-marsh designed wetlands. Wetlands normally have sufficient denitrifying population to produce enzymes, carbon to provide microbial energy, and anaerobic conditions to promote denitrification. However, the anaerobic conditions of wetland sediments limit the rate of nitrification. Thus, denitrification of animal wastewaters in wetlands is generally nitrate-limited. Wetlands are also helpful in reducing pathogen microorganisms. On the other hand, phosphorus removal is somewhat limited by the anaerobic conditions of wetlands. Therefore, when very high mass removals of nitrogen and phosphorus are required, pre- or in-wetland procedures that promote oxidation are needed to increase treatment efficiency. Such procedures offer potential for enhanced constructed wetland treatment of animal wastewater.
Afficher plus [+] Moins [-]