Affiner votre recherche
Résultats 1-10 de 500
Aquatic macrophytes mitigate the short-term negative effects of silver nanoparticles on denitrification and greenhouse gas emissions in riparian soils
2022
He, Gang | Shu, Shi | Liu, Guihua | Zhang, Quanfa | Liu, Yi | Jiang, Ying | Liu, Wenzhi
Silver nanoparticles (AgNPs) are increasingly released into the aquatic environments because of their extensive use in consumer products and industrial applications. Some researchers have explored the toxicity of AgNPs to nitrogen (N) and carbon (C) cycles, but little is known about the role of aquatic plants in regulating the impact of AgNPs on these biogeochemical processes and related microorganisms. Here, two 90-day pot experiments were conducted to determine the effect of AgNPs on denitrification rates and greenhouse gas emissions in riparian wetland soils, with or without emergent plants (Typha minima Funck). As a comparison, the toxicity of equal concentration of AgNO₃ was also determined. The results showed that AgNPs released a great quantity of free Ag⁺, most of which was accumulated in soils, while little (less than 2%) was absorbed by plant shoots and roots. Both AgNPs and AgNO₃ could increase the soil redox potential and affect the growth and nutrient (N and phosphorus) uptake of plants. In soils with plants, there was no significant difference in denitrification rates and emissions of N₂O and CH₄ between control and AgNPs or AgNO₃ treatments at all tested concentrations (0.5, 1 and 10 mg kg⁻¹). However, low levels of AgNPs (0.5 mg kg⁻¹) significantly enhanced CO₂ emission throughout the experiment. Interestingly, in the absence of plants, a high dosage (10 mg kg⁻¹) of AgNPs generally inhibited soil denitrification and stimulated the emissions of CO₂, CH₄ and N₂O in the short-term. Meanwhile, the abundance of key denitrifying genes (nirS and nirK) was significantly increased by exposure to 10 mg kg⁻¹ AgNPs or AgNO₃. Our results suggest that emergent plants can alleviate the short-term negative effects of AgNPs on N and C cycling processes in wetland soils through different pathways.
Afficher plus [+] Moins [-]Fate of dissolved inorganic nitrogen in turbulent rivers: The critical role of dissolved oxygen levels
2022
Liu, Ming | He, Yixin | Cao, Li | Zhi, Yue | He, Xianjin | Li, Tao | Wei, Yanyan | Yuan, Xiaobing | Liu, Bingsheng | He, Qiang | Li, Hong | Miao, Xiaojun
Dissolved inorganic nitrogen (DIN) is considered the main factor that induces eutrophication in water, and is readily influenced by hydrodynamic activities. In this study, a 4-year field investigation of nitrogen dynamics in a turbulent river was conducted, and a laboratory study was performed in the approximately homogeneous turbulence simulation system to investigate potential mechanisms involved in DIN transformation under turbulence. The field investigation revealed that, contrary to NO⁻₃ dynamics, the NH⁺₄ concentrations in water were lower in flood seasons than in drought seasons. Further laboratory results demonstrated that limitation of dissolved oxygen (DO) caused inactive nitrification and active denitrification in static river sediment. In contrast, the increased DO levels in turbulent river intensified the mineralization of organic nitrogen in sediment; moreover, ammonification and nitrification were activated, while denitrification was first activated and then depressed. Turbulence therefore decreased NH⁺₄ and NO⁻₂ concentrations, but increased NO⁻₃ and total DIN concentrations in the overlying water, causing the total DIN to increase from 0.4 mg/L to maximum of 1.0 and 1.7 mg/L at low and high turbulence, respectively. The DIN was maintained at 0.7 and 1.0 mg/L after the 30-day incubation under low and high turbulence intensities (ε) of 3.4 × 10⁻⁴ and 7.4 × 10⁻² m²/s³, respectively. These results highlight the critical role of DO in DIN budgets under hydrodynamic turbulence, and provide new insights into the DIN transport and transformation mechanisms in turbulent rivers.
Afficher plus [+] Moins [-]Nitrous oxide emission in altered nitrogen cycle and implications for climate change
2022
Aryal, Babita | Gurung, Roshni | Camargo, Aline F. | Fongaro, Gislaine | Treichel, Helen | Mainali, Bandita | Angove, Michael J. | Ngo, Huu Hao | Guo, Wenshan | Puadel, Shukra Raj
Natural processes and human activities play a crucial role in changing the nitrogen cycle and increasing nitrous oxide (N₂O) emissions, which are accelerating at an unprecedented rate. N₂O has serious global warming potential (GWP), about 310 times higher than that of carbon dioxide. The food production, transportation, and energy required to sustain a world population of seven billion have required dramatic increases in the consumption of synthetic nitrogen (N) fertilizers and fossil fuels, leading to increased N₂O in air and water. These changes have radically disturbed the nitrogen cycle and reactive nitrogen species, such as nitrous oxide (N₂O), and have impacted the climatic system. Yet, systematic and comprehensive studies on various underlying processes and parameters in the altered nitrogen cycle, and their implications for the climatic system are still lacking. This paper reviews how the nitrogen cycle has been disturbed and altered by anthropogenic activities, with a central focus on potential pathways of N₂O generation. The authors also estimate the N₂O–N emission mainly due to anthropogenic activities will be around 8.316 Tg N₂O–N yr⁻¹ in 2050. In order to minimize and tackle the N₂O emissions and its consequences on the global ecosystem and climate change, holistic mitigation strategies and diverse adaptations, policy reforms, and public awareness are suggested as vital considerations. This study concludes that rapidly increasing anthropogenic perturbations, the identification of new microbial communities, and their role in mediating biogeochemical processes now shape the modern nitrogen cycle.
Afficher plus [+] Moins [-]N2O and NO production and functional microbes responding to biochar aging process in an intensified vegetable soil
2022
Zhang, Xi | Zhang, Junqian | Song, Mengxin | Dong, Yubing | Xiong, Zhengqin
Vegetable soils with high nitrogen input are hotspots of nitrous oxide (N₂O) and nitric oxide (NO), and biochar amended to soil has been documented to effectively decrease N₂O and NO emissions. However, the aging effects of biochar on soil N₂O and NO production and the relevant mechanisms are not thoroughly understood. A¹⁵N tracing microcosm study was conducted to clarify the responses of N₂O and NO production pathways to the biochar aging process in vegetable soil. The results showed that autotrophic nitrification was the predominant source of N₂O production. Biochar aging increased the O-containing functional groups while lowering the aromaticity and pore size. Fresh biochar enhanced the AOB-amoA gene abundance and obviously stimulated N₂O production by 15.5% via autotrophic nitrification and denitrification. In contrast, field-aged biochar markedly weakened autotrophic nitrification and denitrification and thus decreased N₂O production by 17.0%, as evidenced by the change in AOB-amoA and nosZI gene abundances. However, the amendment with artificially lab-aged biochar had no effect on N₂O production. With the extension of aging time, biochar application reduced the soil NO production dominated by nitrification. Changes in the N₂O and NO fluxes were closely associated with soil NH₄⁺-N and NO₂⁻-N contents, indicating that autotrophic nitrification played a critical role in NO production. Overall, our study demonstrated that field-aged biochar suppressed N₂O production via autotrophic nitrification and denitrification by regulating associated functional genes, but not for lab-aged biochar or fresh biochar. These findings improved our insights regarding the implications of biochar aging on N₂O and NO mitigation in vegetable soils.
Afficher plus [+] Moins [-]Improving denitrification efficiency in constructed wetlands integrated with immobilized bacteria under high saline conditions
2021
Wang, Xinyi | Zhu, Hui | Yan, Baixing | Shutes, B. (Brian) | Bañuelos, Gary | Wen, Huiyang | Cheng, Rui
Constructed wetlands (CWs) inoculated with exogenous microbes have great potential for removing pollutants in adverse environments. The rapid loss of functional bacteria and the high cost of repeated additions of inoculum, however, limit the practical application of this technology. In this study, C–F2 immobilized bacteria (i.e., immobilized salt-tolerant bacterium Alishewanella sp. F2 incorporated with a carbon source) were developed and utilized in CWs for solving the above problems. A 60-day experiment demonstrated that bioaugmented CWs (Bio-CWs) with the addition of C–F2 immobilized bacteria into the bottom gravel layer of CW microcosms (B-CF2 treatment) exhibited high nitrogen removal efficiency under a saline condition (electrical conductivity of 15 mS/cm). We measured mean nitrate nitrogen (NO₃⁻-N) and total nitrogen (TN) removal percentages of 97.8% and 88.1%, respectively, which were significantly (p < 0.05) higher than those in Bio-CWs with microbial inoculum (MI-F2 treatment, 63.5% and 78.2%) and unbioaugmented CWs (CK, 48.7% and 67.2%). The TN content of the entire plant was significantly (p < 0.05) increased in B-CF2 (636.06 mg/microcosm) compared with CK (372.06 mg/microcosm). The relative abundances of the genera Alishewanella (i.e., the exogenous bacterium, 5.5%), Clostridium-XlVa (8.8%) and Bacteroides (21.1%) in B-CF2 were significantly (p < 0.05) higher than in MI-F2 and CK, which improved the denitrification capacity of CWs. Overall, a high denitrification efficiency and durability were achieved in the newly developed Bio-CWs (i.e., B-CF2 treatment) with immobilized bacteria under saline conditions, which provides an alternative technology for the rapid removal of nitrogen from saline wastewater.
Afficher plus [+] Moins [-]Efficient utilization of Iris pseudacorus biomass for nitrogen removal in constructed wetlands: Combining alkali treatment
2021
Gu, Xushun | He, Shengbing | Huang, Jungchen
Aquatic plant biomass like Iris pseudacorus can be used as electron donor to improve denitrification performance in subsurface constructed wetlands. However, the phenomenon that the nitrogen removal rate declined in the terminal stage restricted the utilization of litters. In terms of this problem, this study investigated the performance of the used biomass through alkali treatment on nitrogen removal and analyzed the effect of alkali treatment on the component and structure of biomass and microbial community. The results showed that the alkali-treated biomass could further enhance the nitrogen removal by nearly 15% compared with used ones. The significant damage of cell walls and compact fibers containing cellulose and lignin through alkali treatment mainly resulted in the improvement of carbon release and nitrogen removal. With the addition of alkali-treated biomass, the richness index of microbes was higher compared with other biomass materials. Furthermore, the abundance of denitrification related genera increased and the abundance of genera for nitrification was maintained. Based on these finds, a mode of a more efficient Iris pseudacorus self-consumed subsurface flow constructed wetlands was designed. In this mode, the effluent total nitrogen could be stabilized below 5 mg L⁻¹ for nine months and the weight of litters could be further cut down by 75%. These findings would contribute to efficient utilization of plant biomass for nitrogen removal enhancement and final residue reduction in the wetlands.
Afficher plus [+] Moins [-]Influence of modified biochar supported Fe–Cu/polyvinylpyrrolidone on nitrate removal and high selectivity towards nitrogen in constructed wetlands
2021
Hou, Weihao | Wang, Sen | Li, Yue | Hao, Ziran | Zhang, Yi | Kong, Fanlong
In this study, the biochar (BC) supported Fe–Cu bimetallic stabilized by PVP (Fe–Cu/PVP/BC) were prepared and utilized to enhance the nitrate (NO₃⁻) removal and the selectivity toward nitrogen (N₂). Results showed the optimum Fe:Cu:BC ratio and the dosage of the BC (pyrolysis at 700 °C) supported Fe–Cu bimetallic stabilized by polyvinylpyrrolidone (PVP) (Fe–Cu/PVP/BC₇₀₀) were respectively 1:2:3 and 1 mg L⁻¹ with the selectivity toward N₂ of 31 %. This was mainly due to the synergy among Fe⁰, Cu⁰ and BC in the Fe–Cu/PVP/BC. The addition of Fe⁰ could reduce the NO₃⁻ through providing electron. The Cu⁰ and BC improved the selectivity of NO₃⁻ to N₂ through forming [Cu–NO₂⁻ₐdₛ] and adjusting redox potential. The addition of Fe–Cu/PVP/BC could supply electrons for denitrification and enhance the relative abundances of Azospira and Thauera related to denitrification to improve NO₃⁻ removal. This result was further confirmed by the variations of denitrifying functional genes (narG, nirK, nirS and nosZ). This research provided an effective method to improve NO₃⁻ removal during surface water treatment in constructed wetlands (CWs) by adding Fe–Cu/PVP/BC.
Afficher plus [+] Moins [-]Characteristics of annual N2O and NO fluxes from Chinese urban turfgrasses
2021
Zhan, Yang | Xie, Junfei | Yao, Zhisheng | Wang, Rui | He, Xingjia | Wang, Yan | Zheng, Xunhua
Urban turfgrass ecosystems are expected to increase at unprecedented rates in upcoming decades, due to the increasing population density and urban sprawl worldwide. However, so far urban turfgrasses are among the least understood of all terrestrial ecosystems concerning their impact on biogeochemical N cycling and associated nitrous oxide (N₂O) and nitric oxide (NO) fluxes. In this study, we aimed to characterize and quantify annual N₂O and NO fluxes from urban turfgrasses dominated by either C4, warm-season species or C3, cool-season and shade-enduring species, based on year-round field measurements in Beijing, China. Our results showed that soil N₂O and NO fluxes varied substantially within the studied year, characterizing by higher emissions during the growing season and lower fluxes during the non-growing season. The regression model fitted by soil temperature and soil water content explained approximately 50%–70% and 31%–38% of the variance in N₂O and NO fluxes, respectively. Annual cumulative emissions for all urban turfgrasses ranged from 0.75 to 1.27 kg N ha⁻¹ yr⁻¹ for N₂O and from 0.30 to 0.46 kg N ha⁻¹ yr⁻¹ for NO, both are generally higher than those of Chinese natural grasslands. Non-growing season fluxes contributed 17%–37% and 23%–30% to the annual budgets of N₂O and NO, respectively. Our results also showed that compared to the cool-season turfgrass, annual N₂O and NO emissions were greatly reduced by the warm-season turfgrass, with the high root system limiting the availability of inorganic N substrates to soil microbial processes of nitrification and denitrification. This study indicates the importance of enhanced N retention of urban turfgrasses through the management of effective species for alleviating the potential environmental impacts of these rapidly expanding ecosystems.
Afficher plus [+] Moins [-]Biological iron nitrogen cycle in ecological floating bed: Nitrogen removal improvement and nitrous oxide emission reduction
2021
Sun, Shanshan | Gu, Xushun | Zhang, Manping | Tang, Li | He, Shengbing | Huang, Jungchen
Ecological floating beds (EFBs) have become a superior method for treating secondary effluent from wastewater treatment plant. However, insufficient electron donor limited its denitrification efficiency. Iron scraps from lathe cutting waste consist of more than 95% iron could be used as electron donors to enhance denitrification. In this study, EFBs with and without iron scraps supplementation (EFB-Fe and EFB, respectively) were conducted to explore the impacts of iron scraps addition on nitrogen removal, nitrous oxide (N₂O) emissions and microbial communities. Results showed the total nitrogen (TN) removal in EFB-Fe improved to 79% while that in EFB was 56%. N₂O emission was 0–6.20 mg m⁻² d⁻¹ (EFB-Fe) and 1.74–15.2 mg m⁻² d⁻¹ (EFB). Iron scraps could not only improve nitrogen removal efficiency, but also reduce N₂O emissions. In addition, high-throughput sequencing analysis revealed that adding iron scraps could improve the sum of denitrification related genera, among which Novosphingobium accounted for the highest proportion (6.75% of PFe1, 4.24% of PFe2, 3.18% of PFe3). Iron-oxidizing bacteria and iron-respiring bacteria associated with and nitrate reducing bacteria mainly concentrated on the surface of iron scraps. Principal co-ordinates analysis (PCoA) indicated that iron scraps were the key factor affecting microbial community composition. The mechanism of iron scraps enhanced nitrogen removal was realized by enhanced biological denitrification process. Iron release dynamic from iron scraps was detected in bench-scale experiment and the electron transfer mechanism was that Fe⁰ transferred electrons directly to NO₃⁻-N, and biological iron nitrogen cycle occurred in EFB-Fe without secondary pollution.
Afficher plus [+] Moins [-]Cd bioavailability and nitrogen cycling microbes interaction affected by mixed amendments under paddy-pak choi continued planting
2021
Li, Houfu | Abbas, Touqeer | Cai, Mei | Zhang, Qichun | Wang, Jingwen | Li, Yong | Di, Hongjie | Ṭāhir, Muḥammad
Cadmium (Cd) is the most concerning soil pollutant, and a threat to human health, especially in China. The in-situ immobilization of Cadmium by amendments is one of the most widely adopted methods to remedy soil contamination. The study was designed to evaluate the effect of organo-chemical amendments on soil Cd bioavailability and nitrogen cycling microbes under continuous planting of rice (Oryza sativa) and pak choi (Brassica chinensis L.). The experiment was carried out using four amendments, Lime, Zeolite, Superphosphate, and Biochar, at two different ratios; M1: at the ratio of 47:47:5:1, and M2 at the ratio of 71:23:5:1, respectively. Moreover, both M1 and M2 were enriched at four levels (T1: 0.5%; T2: 1%; T3: 2%; T4: 4%). Results showed that compared with CK (Cd enriched soils), the yield of rice under treatments of M1T1 and M2T1 increased by 8.93% and 8.36%, respectively. While the biomass (fresh weight) of pak choi under M1 and M2 amendments increased by 2.52–2.98 times and 0.76–2.89 times respectively, under enrichment treatments T1, T2, and T3. The total Cd concentrations in rice grains treated with M1T3 and M2T3 decreased by 89.25% and 93.16%, respectively, compared with CK. On the other hand, the total Cd concentrations in pak choi under M1T3 and M2T2 decreased by 92.86% and 90.23%, respectively. The results showed that soil pH was the main factor affecting Cd bioavailability in rice and pak choi. The Variance partitioning analysis (VPA) of rice and pak choi showed that soil pH was the most significant contributing factor. In the rice season, the contribution of soil pH (P) on Cd bioavailability was 10.14% (P = 0.102), and in the pak choi season, the contribution of soil pH was 8.38% (P = 0.133). Furthermore, the abundance of ammonia oxidation and denitrifying microorganisms had significantly correlation with soil pH and exchange Cd. In rice season, when the enrichment level of amendments increased from 0.5% (T1) to 2% (T3), the gene abundance of AOA, AOB, nirK, nirS and nosZ (І) tended to decrease. While in pak choi season, when the enrichment level increased at the level of 0.5% (T1), 1% (T2), and 2% (T3), the gene abundance of AOB, nirS, and nosZ (І) increased. Additionally, the gene abundance of AOA and nirK showed a reduction in the pak choi season contrasting to rice. And the mixed amendment M2 performed better at reducing Cd uptake than M1, which may have correlation with the ratio of lime and zeolite in them. Finally, we conclude that between these two amendments, when applied at a moderate level M2 type performed better than M1 in reducing Cd uptake, and also showed positive effects on both gene abundance and increase soil pH.
Afficher plus [+] Moins [-]