Affiner votre recherche
Résultats 1-10 de 36
Petroleum hydrocarbon and microbial community structure successions in marine oil-related aggregates associated with diatoms relevant for Arctic conditions
2018
Netzer, Roman | Henry, Ingrid Annemarie | Ribicic, Deni | Wibberg, Daniel | Brönner, Ute | Brakstad, Odd Gunnar
Oil-related aggregates (ORAs) may contribute to the fate of oil spilled offshore. However, our understanding about the impact of diatoms and associated bacteria involved in the formation of ORAs and the fate of oil compounds in these aggregates is still limited. We investigated these processes in microcosm experiments with defined oil dispersions in seawater at 5 °C, employing the Arctic diatom Fragilariopsis cylindrus and its associated bacterial assemblage to promote ORA formation. Accumulation of oil compounds, as well as biodegradation of naphthalenes in ORAs and corresponding water phases, was enhanced in the presence of diatoms. Interestingly, the genus Nonlabens was predominating the bacterial communities in diatom-supplemented microcosms, while this genus was not abundant in other samples. This work elucidates the relevance of diatom biomass for the formation of ORAs, microbial community structures and biodegradation processes in chemically dispersed oil at low temperatures relevant for Arctic conditions. | acceptedVersion
Afficher plus [+] Moins [-]Glyphosate-based herbicide exposure affects diatom community development in natural biofilms
2021
Corrales, Natalie | Meerhoff, Mariana | Antoniades, Dermot
Glyphosate herbicide is ubiquitously used in agriculture and weed control. It has now been identified in aquatic ecosystems worldwide, where numerous studies have suggested that it may have both suppressive and stimulatory effects on diverse non-target organisms. We cultured natural biofilms from a hypereutrophic environment to test the effects on periphytic diatoms of exposure to a glyphosate-based herbicide formulation at concentrations from 0 to 10 mg L⁻¹ of active ingredient. There were clear and significant differences between treatments in diatom community structure after the 15-day experiments. Diversity increased more in low glyphosate treatments relative to higher concentrations, and compositional analyses indicated statistically significant differences between glyphosate treatments. The magnitude of change observed was significantly correlated with glyphosate-based herbicide concentration. Our results show that glyphosate-based herbicides have species-selective effects on benthic diatoms that may significantly alter trajectories of community development and therefore may affect benthic habitats and whole ecosystem function.
Afficher plus [+] Moins [-]Effects of potash mining on river ecosystems: An experimental study
2017
Cañedo-Argüelles, Miguel | Brucet, Sandra | Carrasco, Sergi | Flor-Arnau, Núria | Ordeix, Marc | Ponsá, Sergio | Coring, Eckhard
In spite of being a widespread activity causing the salinization of rivers worldwide, the impact of potash mining on river ecosystems is poorly understood. Here we used a mesocosm approach to test the effects of a salt effluent coming from a potash mine on algal and aquatic invertebrate communities at different concentrations and release modes (i.e. press versus pulse releases). Algal biomass was higher in salt treatments than in control (i.e. river water), with an increase in salt-tolerant diatom species. Salt addition had an effect on invertebrate community composition that was mainly related with changes in the abundance of certain taxa. Short (i.e. 48 h long) salt pulses had no significant effect on the algal and invertebrate communities. The biotic indices showed a weak response to treatment, with only the treatment with the highest salt concentration causing a consistent (i.e. according to all indices) reduction in the ecological quality of the streams and only by the end of the study. Overall, the treatment's effects were time-dependent, being more clear by the end of the study. Our results suggest that potash mining has the potential to significantly alter biological communities of surrounding rivers and streams, and that specific biotic indices to detect salt pollution should be developed.
Afficher plus [+] Moins [-]Biodegradation of carbamate pesticides by natural river biofilms in different seasons and their effects on biofilm community structure
2013
Tien, Chien-Jung | Lin, Mon-Chu | Chiu, Wan-Hsin | Chen, Colin S.
This study investigated the ability of natural river biofilms from different seasons to degrade the carbamate pesticides methomyl, carbaryl and carbofuran in single and multiple pesticide systems, and the effects of these pesticides on algal and bacterial communities within biofilms. Spring biofilms had the lowest biomass of algae and bacteria but showed the highest methomyl degradation (>99%) and dissipation rates, suggesting that they might contain microorganisms with high methomyl degradation abilities. Degradation of carbofuran (54.1–59.5%) by biofilms in four seasons was similar, but low degradation of carbaryl (0–27.5%) was observed. The coexistence of other pesticides was found to cause certain effects on pesticide degradation and primarily resulted in lower diversity of diatoms and bacteria than when using a single pesticide. The tolerant diatoms and bacteria potentially having the ability to degrade test pesticides were identified. River biofilms could be suitable biomaterials or used to isolate degraders for bioremediating pesticide-contaminated water.
Afficher plus [+] Moins [-]Spatio-temporal impact of salinated mine water on Lake Jormasjärvi, Finland
2019
Leppänen, Jaakko Johannes | Luoto, Tomi P. | Weckström, Jan
The salinization of freshwater environments is a global concern, and one of the largest sources of salinated water is the mining industry. An increasing number of modern mines are working with low grade sulfide ores, resulting in increased volumes of potentially harmful saline drainage. We used water monitoring data, together with data on sedimentary fossil remains (cladoceran, diatom and chironomid), to analyze the spatio-temporal (5 sampling locations and 3 sediment depths) impact of salinated mine water originating from the Talvivaara/Terrafame open cast mine on multiple components of the aquatic ecosystem of Lake Jormasjärvi, Finland. Lake Jormasjärvi is the fourth and largest lake in a chain of lakes along the path of the mine water. Despite the location and large water volume, the mine water has changed the chemistry of Lake Jormasjärvi, reflected in increased electrical conductivity values since 2010. The ecological impact is significant around the inflow region of the lake, as all biological indicator groups show a rapid and directional shift towards new species composition. There is a clear trend in improved water quality as one moves further from the point of inflow, and as one looks back in time. Our results show that salinated mine water may induce rapid and large scale changes, even far downstream along a chain of several sinking basins. This is of special importance in cases where large amounts of waste water are processed in the vicinity of protected habitats.
Afficher plus [+] Moins [-]Effects of olive mill wastewater discharge on benthic biota in Mediterranean streams
2019
Smeti, Evangelia | Kalogianni, Eleni | Karaouzas, Ioannis | Laschou, Sofia | Tornés, Elisabet | De Castro-Català, Núria | Anastasopoulou, Evangelia | Koutsodimou, Maria | Andriopoulou, Argyro | Vardakas, Leonidas | Muñoz, Isabel | Sabater, Sergi | Skoulikidis, Nikolaos Th
Olive mill wastewaters (OMW) discharging in river ecosystems cause significant adverse effects on their water chemistry and biological communities. We here examined the effects of OMW loads in four streams of a Mediterranean basin characterized by changing flow. The diatom and macroinvertebrate community structures were compared between upstream (control) and downstream (impacted) sites receiving OMW discharge. We also tested if effects occurred at the organism level, i.e. the occurrence of deformities in diatom valves, and the sediment toxicity on the midge Chironomus riparius. We evaluated these effects through a two-year analysis, at various levels of chemical pollution and dilution capacity. The impacted sites had high phenol concentrations and organic carbon loads during and after olive mill (OM) operation, and were characterized by higher abundances of pollution-tolerant diatom and macroinvertebrate taxa. Diatom valve deformities occurred more frequently at the impacted sites. The development of C. riparius was affected by phenolic compounds and organic carbon concentrations in the sediments. The similarity in the diatom and macroinvertebrate assemblages between control and impacted sites decreased at lower flows. Diatoms were more sensitive in detecting deterioration in the biological status of OMW receiving waterways than macroinvertebrates. Our results indicate that the negative effects of OMW extended to the whole benthic community, at both assemblage and organism level.
Afficher plus [+] Moins [-]Accumulation, subcellular distribution and toxicity of inorganic mercury and methylmercury in marine phytoplankton
2011
Wu, Yun | Wang, Wen-Xiong
We examined the accumulation, subcellular distribution, and toxicity of Hg(II) and MeHg in three marine phytoplankton (the diatom Thalassiosira pseudonana, the green alga Chlorella autotrophica, and the flagellate Isochrysis galbana). For MeHg, the inter-species toxic difference could be best interpreted by the total cellular or intracellular accumulation. For Hg(II), both I. galbana and T. pseudonana exhibited similar sensitivity, but they each accumulated a different level of Hg(II). A higher percentage of Hg(II) was bound to the cellular debris fraction in T. pseudonana than in I. galbana, implying that the cellular debris may play an important role in Hg(II) detoxification. Furthermore, heat-stable proteins were a major binding pool for MeHg, while the cellular debris was an important binding pool for Hg(II). Elucidating the different subcellular fates of Hg(II) and MeHg may help us understand their toxicity in marine phytoplankton at the bottom of aquatic food chains.
Afficher plus [+] Moins [-]The algal toxicity of silver engineered nanoparticles and detoxification by exopolymeric substances
2009
Miao, Ai-Jun | Schwehr, Kathy A. | Xu, Chen | Zhang, Sai-Jin | Luo, Zhiping | Quigg, Antonietta | Santschi, Peter H.
In this study, we report that silver ions (Ag+) from the oxidative dissolution of silver engineered nanoparticles (Ag-ENs) determined the EN toxicity to the marine diatom Thalassiosira weissflogii. Most of the Ag-ENs formed non-toxic aggregates (>0.22 μm) in seawater. When the free Ag+ concentration ([Ag+]F) was greatly reduced by diafiltration or thiol complexation, no toxicity was observed, even though the Ag-ENs were better dispersed in the presence of thiols with up to 1.08 x 10⁻⁵ M Ag-ENs found in the <0.22 μm fraction, which are orders of magnitude higher than predicted for the natural aquatic environment. The secretion of polysaccharide-rich algal exopolymeric substances (EPS) significantly increased at increasing [Ag+]F. Both dissolved and particulate polysaccharide concentrations were higher for nutrient-limited cells, coinciding with their higher Ag+ tolerance, suggesting that EPS may be involved in Ag+ detoxification. Ag-ENs were found to only have indirect toxic effects on marine phytoplankton as a result of their rapid Ag+ release.
Afficher plus [+] Moins [-]Nanoplastics exposure modulate lipid and pigment compositions in diatoms
2020
The impact of nanoplastics (NP) using model polystyrene nanoparticles amine functionalized (PS–NH₂) has been investigated on pigment and lipid compositions of the marine diatom Chaetoceros neogracile, at two growth phases using a low (0.05 μg mL⁻¹) and a high (5 μg mL⁻¹) concentrations for 96 h. Results evidenced an impact on pigment composition associated to the light-harvesting function and photoprotection mainly at exponential phase. NP also impacted lipid composition of diatoms with a re-adjustment of lipid classes and fatty acids noteworthy. Main changes upon NP exposure were observed in galactolipids and triacylglycerol’s at both growth phases affecting the thylakoids membrane structure and cellular energy reserve of diatoms. Particularly, exponential cultures exposed to high NP concentration showed an impairment of long chain fatty acids synthesis. Changes in pigment and lipid content of diatom’ cells revealed that algae physiology is determinant in the way cells adjust their thylakoid membrane composition to cope with NP contamination stress. Compositions of reserve and membrane lipids are proposed as sensitive markers to assess the impact of NP exposure, including at potential predicted environmental doses, on marine organisms.
Afficher plus [+] Moins [-]The impacts of intensive mining on terrestrial and aquatic ecosystems: A case of sediment pollution and calcium decline in cool temperate Tasmania, Australia
2020
Beck, K.K. | Mariani, M. | Fletcher, M.-S. | Schneider, L. | Aquino-López, M.A. | Gadd, P.S. | Heijnis, H. | Saunders, K.M. | Zawadzki, A.
Mining causes extensive damage to aquatic ecosystems via acidification, heavy metal pollution, sediment loading, and Ca decline. Yet little is known about the effects of mining on freshwater systems in the Southern Hemisphere. A case in point is the region of western Tasmania, Australia, an area extensively mined in the 19th century, resulting in severe environmental contamination. In order to assess the impacts of mining on aquatic ecosystems in this region, we present a multiproxy investigation of the lacustrine sediments from Owen Tarn, Tasmania. This study includes a combination of radiometric dating (¹⁴C and ²¹⁰Pb), sediment geochemistry (XRF and ICP-MS), pollen, charcoal and diatoms. Generalised additive mixed models were used to test if changes in the aquatic ecosystem can be explained by other covariates. Results from this record found four key impact phases: (1) Pre-mining, (2) Early mining, (3) Intense mining, and (4) Post-mining. Before mining, low heavy metal concentrations, slow sedimentation, low fire activity, and high biomass indicate pre-impact conditions. The aquatic environment at this time was oligotrophic and dystrophic with sufficient light availability, typical of western Tasmanian lakes during the Holocene. Prosperous mining resulted in increased burning, a decrease in landscape biomass and an increase in sedimentation resulting in decreased light availability of the aquatic environment. Extensive mining at Mount Lyell in the 1930s resulted in peak heavy metal pollutants (Pb, Cu and Co) and a further increase in inorganic inputs resulted in a disturbed low light lake environment (dominated by Hantzschia amphioxys and Pinnularia divergentissima). Following the closure of the Mount Lyell Co. in 1994 CE, Ca declined to below pre-mining levels resulting in a new diatom assemblage and deformed diatom valves. Therefore, the Owen Tarn record demonstrates severe sediment pollution and continued impacts of mining long after mining has stopped at Mt. Lyell Mining Co.
Afficher plus [+] Moins [-]