Affiner votre recherche
Résultats 1-10 de 68
Analytical Methods for Extraction, Determination and Degradation of Diazinon in Soil Samples
2023
Dehghan Abkenar, Shiva | khakipour, Nazanin | Ganjali, Mohammad Reza
Diazinon is an organophosphorus insecticide that was widely used in agriculture to control pests on crops. It acts as an acetylcholinesterase inhibitor, which means that it interferes with the normal functioning of the nervous system of insects, leading to their death. Diazinon can also have an impact on human health and the environment, as it can contaminate water and soil and pose a risk to non-target species, including humans and animals. This review paper shows the progress made in the last years in analytical methods applied for the purpose of extraction, detection and degradation of Diazinon as an important environmental pollutant. A variety of sampling and analytical methods have been developed to measure diazinon and its metabolites in different media. The most popular methods for the identification and analysis of Diazinon are liquid and gas chromatography, liquid-liquid extraction, and solid-phase extraction (SPE). The focus of this review is on the identification, measurement, and elimination of diazinon as a major soil pollutant. It begins with a discussion of analytical techniques, followed by an examination of methods for removing diazinon from soil.
Afficher plus [+] Moins [-]Pesticides in rainfall and air in Italy.
1993
Trevisan M. | Montepiani C. | Ragozza L. | Bartoletti C. | Ioannilli E. | Re A.A.M. del
Suspect and non-targeted screening-based human biomonitoring identified 74 biomarkers of exposure in urine of Slovenian children
2022
Tkalec, Žiga | Codling, Garry | Tratnik, Janja Snoj | Mazej, Darja | Klánová, Jana | Horvat, Milena | Kosjek, Tina
Human exposure to organic contaminants is widespread. Many of these contaminants show adverse health effects on human population. Human biomonitoring (HBM) follows the levels and the distribution of biomarkers of exposure (BoE), but it is usually done in a targeted manner. Suspect and non-targeted screening (SS/NTS) tend to find BoE in an agnostic way, without preselection of compounds, and include finding evidence of exposure to predicted, unpredicted known and unknown chemicals. This study describes the application of high-resolution mass spectrometry (HRMS)-based SS/NTS workflow for revealing organic contaminants in urine of a cohort of 200 children from Slovenia, aged 6–9 years. The children originated from two regions, urban and rural, and the latter were sampled in two time periods, summer and winter. We tentatively identified 74 BoE at the confidence levels of 2 and 3. These BoE belong to several classes of pharmaceuticals, personal care products, plasticizers and plastic related products, volatile organic compounds, nicotine, caffeine and pesticides. The risk of three pesticides, atrazine, amitraz and diazinon is of particular concern since their use was limited in the EU. Among BoE we tentatively identified compounds that have not yet been monitored in HBM schemes and demonstrate limited exposure data, such as bisphenol G, polyethylene glycols and their ethers. Furthermore, 7 compounds with unknown use and sources of exposure were tentatively identified, either indicating the entry of new chemicals into the market, or their metabolites and transformation products. Interestingly, several BoE showed location and time dependency. Globally, this study presents high-throughput approach to SS/NTS for HBM. The results shed a light on the exposure of Slovenian children and raise questions on potential adverse health effects of such mixtures on this vulnerable population.
Afficher plus [+] Moins [-]Diazinon exposure produces histological damage, oxidative stress, immune disorders and gut microbiota dysbiosis in crucian carp (Carassius auratus gibelio)
2021
Tang, Jiali | Wang, Wenqian | Jiang, Yuanhe | Chu, Weihua
Diazinon is a common organophosphate pesticide widely used to control parasitic infections in agriculture. Excessive use of diazinon can have adverse effects on the environment and aquatic animal health. In the present study, the toxic effects of diazinon on the histology, antioxidant, innate immune and intestinal microbiota community composition of crucian carp (Carassius auratus gibelio) were investigated. The results showed that diazinon at the tested concentration (300 μg/L) induced gill and liver histopathological damages. Hepatic total superoxide dismutase (T-SOD), catalase (CAT), and glutathione S-transferase (GST) activities significantly decreased (P < 0.05) by 32.47%, 65.33% and 37.34%, respectively. However, the liver tissue malondialdehyde (MDA) content significantly (P < 0.05) increased by 138.83%. The 300 μg/L diazinon significantly (P < 0.05) downregulated the gene expression of TLR4, MyD88, NF-kB p100 and IL-8 but had no significant effect TNF-α (P = 0.8239). In addition, the results demonstrated that diazinon exposure could affect the intestinal microbiota composition and diversity. Taken together, the results of this study indicated that diazinon exposure can cause damage to crucian carp, induce histopathological damage in gill and liver tissues, oxidative stress in the liver, and innate immune disorders and alter intestinal microbiota composition and diversity.
Afficher plus [+] Moins [-]The formation of bound residues of diazinon in four UK soils: Implications for risk assessment
2011
Fenlon, Katie A. | Andreou, Kostas | Jones, K. C. (Kevin C.) | Semple, K. T. (Kirk T.)
The behaviour of diazinon in the soil determines the likelihood of further pollution incidents, particularly leaching to water. The most significant processes in the control of the fate of diazinon in the soil are microbial degradation and the formation of bound residues. Soils from four sites in the UK were amended with diazinon and its ¹⁴C labelled analogue and incubated for 100 days. After 0, 10, 21, 50 and 100 days, the formation of bound residues was assessed by solvent extraction, and the microbial degradation of diazinon by mineralisation assay. In microbially active soils, diazinon is degraded rapidly, reducing the risk of future pollution incidents. However, where there was limited mineralisation there was also significantly lower formation of bound residues, which may lead to water pollution via leaching. The formation of bound residues was dependent on extraction type. Acetonitrile extraction identified bound residues in all soils, with the bound residue fraction increasing with increasing incubation time.
Afficher plus [+] Moins [-]Management-oriented sensitivity analysis for pesticide transport in watershed-scale water quality modeling using SWAT
2009
Luo, Yuzhou | Zhang, Minghua
The Soil and Water Assessment Tool (SWAT) was calibrated for hydrology conditions in an agricultural watershed of Orestimba Creek, California, and applied to simulate fate and transport of two organophosphate pesticides chlorpyrifos and diazinon. The model showed capability in evaluating pesticide fate and transport processes in agricultural fields and instream network. Management-oriented sensitivity analysis was conducted by applied stochastic SWAT simulations for pesticide distribution. Results of sensitivity analysis identified the governing processes in pesticide outputs as surface runoff, soil erosion, and sedimentation in the study area. By incorporating sensitive parameters in pesticide transport simulation, effects of structural best management practices (BMPs) in improving surface water quality were demonstrated by SWAT modeling. This study also recommends conservation practices designed to reduce field yield and in-stream transport capacity of sediment, such as filter strip, grassed waterway, crop residue management, and tailwater pond to be implemented in the Orestimba Creek watershed. Selected structural BMPs are recommended for reducing loads of OP pesticides.
Afficher plus [+] Moins [-]Microalgae-based bioremediation of water contaminated by pesticides in peri-urban agricultural areas
2020
García-Galán, María Jesús | Monllor-Alcaraz, Luis Simón | Postigo, Cristina | Uggetti, Enrica | López de Alda, Miren | Díez-Montero, Rubén | García, Joan
The present study evaluated the capacity of a semi-closed, tubular horizontal photobioreactor (PBR) to remove pesticides from agricultural run-off. The study was carried out in summer (July) to study its efficiency under the best conditions (highest solar irradiation). A total of 51 pesticides, including 10 transformation products, were selected and investigated based on their consumption rate and environmental relevance. Sixteen of them were detected in the agricultural run-off, and the estimated removal efficiencies ranged from negative values, obtained for 3 compounds, namely terbutryn, diuron and imidacloprid, to 100%, achieved for 10 compounds. The acidic herbicide MCPA was removed by 88% in average, and the insecticides 2,4-D and diazinon showed variable removals, between 100% and negative values. The environmental risk associated to the compounds still present in the effluent of the PBR was evaluated using hazard quotients (HQs), calculated using the average and highest measured concentrations of the compounds. HQ values > 10 (meaning high risk) were obtained for imidacloprid (21), between 1 and 10 (meaning moderate risk) for 2,4-D (2.8), diazinon (4.6) and terbutryn (1.5), and <1 (meaning low risk) for the remaining compounds diuron, linuron and MCPA. The PBR treatment yielded variable removals depending on the compound, similarly to conventional wastewater treatment plants. This study provides new data on the capacity of microalgae-based treatment systems to eliminate a wide range of priority pesticides under real/environmental conditions.
Afficher plus [+] Moins [-]Multiple mitigation mechanisms: Effects of submerged plants on the toxicity of nine insecticides to aquatic animals
2017
Brogan, William R. | Relyea, Rick A.
Understanding the processes that regulate contaminant impacts in nature is an increasingly important challenge. For insecticides in surface waters, the ability of aquatic plants to sorb, or bind, hydrophobic compounds has been identified as a primary mechanism by which toxicity can be mitigated (i.e. the sorption-based model). However, recent research shows that submerged plants can also rapidly mitigate the toxicity of the less hydrophobic insecticide malathion via alkaline hydrolysis (i.e. the hydrolysis-based model) driven by increased water pH resulting from photosynthesis. However, it is still unknown how generalizable these mitigation mechanisms are across the wide variety of insecticides applied today, and whether any general rules can be ascertained about which types of chemicals may be mitigated by each mechanism. We quantified the degree to which the submerged plant Elodea canadensis mitigated acute (48-h) toxicity to Daphnia magna using nine commonly applied insecticides spanning three chemical classes (carbamates: aldicarb, carbaryl, carbofuran; organophosphates: malathion, diazinon, chlorpyrifos; pyrethroids: permethrin, bifenthrin, lambda-cyhalothrin). We found that insecticides possessing either high octanol-water partition coefficients (log Kow) values (i.e. pyrethroids) or high susceptibility to alkaline hydrolysis (i.e. carbamates and malathion) were all mitigated to some degree by E. canadensis, while the plant had no effect on insecticides possessing intermediate log Kow values and low susceptibility to hydrolysis (i.e. chlorpyrifos and diazinon). Our results provide the first general insights into which types of insecticides are likely to be mitigated by different mechanisms based on known chemical properties. We suggest that current models and mitigation strategies would be improved by the consideration of both mitigation models.
Afficher plus [+] Moins [-]Pesticides in the Ebro River basin: Occurrence and risk assessment
2016
Ccanccapa, Alexander | Masiá, Ana | Navarro-Ortega, Alícia | Picó, Yolanda | Barceló, Damià
In this study, 50 pesticides were analyzed in the Ebro River basin in 2010 and 2011 to assess their impact in water, sediment and biota. A special emphasis was placed on the potential effects of both, individual pesticides and their mixtures, in three trophic levels (algae, daphnia and fish) using Risk Quotients (RQs) and Toxic Units (TUs) for water and sediments. Chlorpyrifos, diazinon and carbendazim were the most frequent in water (95, 95 and 70% of the samples, respectively). Imazalil (409.73 ng/L) and diuron (150 ng/L) were at the highest concentrations. Sediment and biota were less contaminated. Chlorpyrifos, diazinon and diclofenthion were the most frequent in sediments (82, 45 and 21% of the samples, respectively). The only pesticide detected in biota was chlorpyrifos (up to 840.2 ng g⁻¹). Ecotoxicological risk assessment through RQs showed that organophosphorus and azol presented high risk for algae; organophosphorus, benzimidazoles, carbamates, juvenile hormone mimic and other pesticides for daphnia, and organophosphorus, azol and juvenile hormone mimics for fish. The sum TUsite for water and sediments showed values < 1 for the three bioassays. In both matrices, daphnia and fish were more sensitive to the mixture of pesticide residues present.
Afficher plus [+] Moins [-]Organophosphorus pesticides exert estrogen receptor agonistic effect determined using Organization for Economic Cooperation and Development PBTG455, and induce estrogen receptor-dependent adipogenesis of 3T3-L1 adipocytes
2021
Kim, Jin-Tae | Lee, Hong Jin | Lee, Hee-Seok
Various chemicals containing pesticides can induce adipogenesis and cause obesity. Organophosphorus pesticides have been used for pest control. Here, we investigated the estrogen receptor (ER)-dependent adipogenesis-inducing effect of representative organophosphorus pesticides (OPs), diazinon, phoxim, terbufos and tolclofos-methyl in 3T3-L1 adipocytes. Four OPs exhibited ER agonistic effect, determined using the OECD Performance Based Test Guideline No. 455; in vitro ER stably transfected transactivation assay using ERα-HeLa-9903 cell line, through binding affinity to ERα. Additionally, they increased lipid droplet accumulation in a dose-dependent manner, which was suppressed by ICI182,780, a well-known ER antagonist. Four OPs treatment induced peroxisome proliferator-activated receptor gamma (PPARγ), CCAAT/enhancer-binding protein alpha (C/EBPα), and perilipin expression. Furthermore, PPARγ, C/EBPα and perilipin expression was inhibited by co-treatment with ICI182,780. The increased mRNA expression of lipoprotein lipase and fatty acid synthase by four OPs was suppressed by co-treatment with ICI182,780. These results indicated that diazinon, phoxim, terbufos, and tolclofos-methyl might have adipogenesis-inducing effect mediated by interacting with ER.
Afficher plus [+] Moins [-]