Affiner votre recherche
Résultats 1-10 de 374
Immobilization of azo-dyes for optical detection of metal ions in water: reaction with Pd(II) [palladium]
2001
Savic, J. | Vasic, V. (Institut za nuklearne nauke "Vinca", Beograd (Yugoslavia). Laboratorija za fizicku hemiju)
The reaction of Pd(II) with 1,8-dihydroxy-2-(pyrazol-5-ylazo)-naphthalen-3,6-disulphonic acid immobilized by physical sorption onto Dowex 1-X8 ion-exchange resin was investigated with the aim to develop the sorption-spectroscopic test method for the detection of low Pd(II) concentrations in water. The resin phase absorption spectra of the reagent and its Pd(II) complex were followed. The immobilized reagent has the spectral characteristics similar to those in the water and forms with Pd(II) 1:1 complex with the absorption maximum at 650 nm. Parameters, such as pH, wavelength and contact time have been optimized for a given amount of the sorbed reagent. The experimental conditions for the linear dependence of absorbance vs. Pd(II) concentration have been determined.
Afficher plus [+] Moins [-]Demonstration of a plant-microbe integrated system for treatment of real-time textile industry wastewater
2022
Jayapal, Mohanapriya | Jagadeesan, Hema | Krishnasamy, Vinothkumar | Shanmugam, Gomathi | Muniyappan, Vignesh | Chidambaram, Dinesh | Krishnamurthy, Satheesh
The real-time textile dyes wastewater contains hazardous and recalcitrant chemicals that are difficult to degrade by conventional methods. Such pollutants, when released without proper treatment into the environment, impact water quality and usage. Hence, the textile dye effluent is considered a severe environmental pollutant. It contains mixed contaminants like dyes, sodium bicarbonate, acetic acid. The physico-chemical treatment of these wastewaters produces a large amount of sludge and costly. Acceptance of technology by the industry mandates that it should be efficient, cost-effective and the treated water is safe for reuse. A sequential anaerobic-aerobic plant-microbe system with acclimatized microorganisms and vetiver plants, was evaluated at a pilot-scale on-site. At the end of the sequential process, decolorization and total aromatic amine (TAA) removal were 78.8% and 69.2% respectively. Analysis of the treated water at various stages using Fourier Transform Infrared (FTIR), High Performance Liquid Chromatography (HPLC)) Gas Chromatography-Mass Spectrometry (GC-MS) Liquid Chromatography-Mass Spectrometry (LC-MS) indicated that the dyes were decolourized and the aromatic amine intermediates formed were degraded to give aliphatic compounds. Scanning Electron Microscope (SEM) and Atomic Force Microscopy (AFM) analysis showed interaction of microbe with the roots of vetiver plants. Toxicity analysis with zebrafish indicated the removal of toxins and teratogens.
Afficher plus [+] Moins [-]Energy and environmental applications of Sn4+/Ti4+ doped α-Fe2O3@Cu2O/CuO photoanode under optimized photoelectrochemical conditions
2021
Nagappagari, Lakshmana Reddy | Lee, Jaewon | Lee, Hyeonkwon | Jeong, Beomgyun | Lee, Kiyoung
The most promising technique for directly converting solar energy into clean fuels and environmental remediation by organic dye degradation is photoelectrochemical (PEC) process. We introduced Sn⁴⁺/Ti⁴⁺ doped α-Fe₂O₃@CuₓO heterojunction photoanode with complete optimization for PEC hydrogen (H₂) generation and organic dye degradation. Improvement of photocurrent photo and reducing overpotentials under optimized conditions lead to enhancing PEC performances, degradation efficiency of organic compounds, and H₂ generation generation rate. The optimized heterojunction photoanode (5TiFe@CuₓO-D) showed IPCE exceeding 42% compared with pristine hematite (Fe₀.₀₁–800₆ₕ) nanostructures (28%). Additionally, all the optimized photoanodes showed higher PEC stability for 10 h. Time-resolved PL spectra confirm the improved average lifetime for heterojunction photoanodes, supporting the enhanced PEC performance. Optimized 5TiFe@CuₓO-D material achieved PEC H₂ generation of ∼300 μL h⁻¹.cm⁻² which is two times higher than pristine hematite’s activity (150 μL h⁻¹.cm⁻²) and almost 99% degradation efficiency within 120 min of irradiation time. Therefore, a state-of-the-art study has been explored for hematite-based heterojunction photoanodes reflecting the superior PEC performance and hydrogen, methyl orange (MO) dye degradation activities. The improved results were reported because of stable morphology and better crystallinity acquired through systematic investigation of thermal effects and hydrothermal duration, improved electrical properties by Sn/Ti doping into the lattice of α-Fe₂O₃ and optimization of CuₓO deposition methods. The formation of well-defined heterojunction minimizes the recombination of the charge carrier and leads to effective transportation of excited electrons for the enhanced PEC performance.
Afficher plus [+] Moins [-]Interactive effects of As, Cd and Zn on their uptake and oxidative stress in As-hyperaccumulator Pteris vittata
2019
Abid, Rafia | Manzoor, Maria | De Oliveira, Letuzia M. | da Silva, Evandro | Rathinasabapathi, Bala | Rensing, Christopher | Mahmood, Seema | Liu, Xue | Ma, Lena Q.
The effects of arsenic (As), cadmium (Cd) and zinc (Zn) on each other's uptake and oxidative stress in As-hyperaccumulator Pteris vittata were investigated. P. vittata plants were exposed to 50 μM As, Cd and/or Zn for 15 d in 0.2-strength Hoagland solution. When applied alone, P. vittata accumulated 185 mg kg⁻¹ As, 164 mg kg⁻¹ Cd and 327 mg kg⁻¹ Zn in the fronds. While Cd and Zn did not impact each other's uptake, As affected Cd and Zn uptake. Whereas As decreased Zn uptake, Zn affected As speciation in P. vittata fronds, with more arsenate (AsV) than arsenite (AsIII) being present. At 50 μM As, 75 μM Zn increased As accumulation in P. vittata fronds by 10 folds to 2363 mg kg⁻¹ compared to 50 μM Zn. Although AsV was the predominant As species in all tissues, Cd enhanced AsIII levels in the fronds but increased AsV in the roots. Co-exposure of Cd + Zn elevated oxidative stress basing on thiobarbituric acid reactive substances, H₂O₂ content, Evans blue dye uptake, membrane injury index and reactive oxygen species (ROS) relative to single metal. By lowering Cd and Zn concentrations in P. vittata fronds, As reduced the associated stress comparative to Cd or Zn treatment. The results enhance our understanding of the mechanisms underlying the interactions between As, Cd and Zn in As-hyperaccumulator P. vittata.
Afficher plus [+] Moins [-]Facile self-assembly synthesis of γ-Fe2O3 /graphene oxide for enhanced photo-Fenton reaction
2019
Wang, Feifei | Yu, Xiaolin | Ge, Maofa | Wu, Sujun | Guan, Juan | Tang, Junwang | Wu, Xiao | Ritchie, R. O. (Robert O.)
A novel self-assembly method was developed to prepare a γ-Fe₂O₃/graphene oxide (GO) heterogeneous catalyst that showed excellent synergy between photocatalysis and Fenton-like reactions. The γ-Fe₂O₃/GO catalyst prepared on the iron plates demonstrated efficient and reproducible catalytic activities for water treatment. It takes only 80 min to degrade 50 mg L⁻¹ methylene (MB) completely, which is the main non-biodegradable dye in wastewater from the textile industry. The heterogeneous catalyst is stable over a wide range of pH (from 2.0 to 10.2) for MB degradation, and can be easily extracted from solution and repeatedly used with little loss of catalytic activity. The high activity and stability of the catalyst system can be attributed to charge separation between γ-Fe₂O₃ and GO, which could accelerate Fenton-like process and photocatalysis. In addition, the dominant reactive oxidant species responsible for the MB degradation, including the hydroxyl radicals (•OH) and holes (h⁺), were trapped on the surface of the γ-Fe₂O₃/GO composite, as proved by a free-radical quenching experiment. The γ-Fe₂O₃/GO heterogeneous catalyst could potentially provide a solution for removal of non-biodegradable dyes from wastewater in the textile industry.
Afficher plus [+] Moins [-]The occurrence, distribution and removal of adsorbable organic halogens (AOX) in a typical fine chemical industrial park
2022
Xu, Ranyun | Chi, Tongtong | Ren, Hang | Li, Feifei | Tian, Jinping | Chen, Lyujun
Coastal water quality in China has been impacted by direct discharge of industrial wastewater, and various kinds of AOX pollutants have been detected in the seawater and sediment. As the dominant pollution source of Hangzhou Bay, a typical fine chemical industry park “HSEDA” was selected as the study area in this research. The AOX in both wastewater and sludge phases from 22 large-scaled enterprises were simultaneously investigated. The results quantitatively illustrated the AOX flows from engineered wastewater and sludge treatment systems to natural environment. It can be seen that industrial enterprises discharged at least 160 t AOX every year, and about 105.4 t/a AOX eventually entered the natural environment. The dye manufacturing industry, which accounted for more than 60% of the total AOX emission load in HSEDA, was identified as the AOX pollution-intensive sector. The occurrence, characteristic pollutants and fate of AOX in dye wastewater were discussed, on the basis of which the improvements of cleaner production and wastewater treatment technologies have been put forward.
Afficher plus [+] Moins [-]Facile green synthesis of ZnO–CdWO4 nanoparticles and their potential as adsorbents to remove organic dye
2021
Fatima, Bushra | Siddiqui, Sharf Ilahi | Nirala, Ranjeet Kumar | Vikrant, Kumar | Kim, Ki Hyun | Ahmad, Rabia | Chaudhry, Saif Ali
In this work, ZnO–CdWO₄ nanoparticles have been synthesized by the ecofriendly green method with lemon leaf extract to favorably anchor functional groups on their surface. The prepared ZnO–CdWO₄ nanoparticles are used as adsorbent to treat Congo red (CR) dye after characterization through FT-IR, UV–Vis, TEM, SEM-EDX, and HRTEM techniques. The equilibrium partition coefficient and adsorption capacity values for CR by ZnO–CdWO₄ are estimated as 21.4 mg g⁻¹ μM⁻¹ and 5 mg g⁻¹, respectively (at an initial dye concentration of 10 mg L⁻¹). The adsorption process is found as exothermic and spontaneous, as determined by the ΔG°, ΔS°, and ΔH° values. The Boyd plot has been used as a confirmatory tool to fit the adsorption kinetics data along with intraparticle diffusion and pseudo-second-order models. Based on this research, ZnO–CdWO₄ nanoparticles are validated as an effective adsorbent for CR dye in aqueous solutions.
Afficher plus [+] Moins [-]ZIF-8 templated assembly of La3+-anchored ZnO distorted nano-hexagons as an efficient active photocatalyst for the detoxification of rhodamine B in water
2021
Karuppasamy, K. | Rabani, Iqra | Vikraman, Dhanasekaran | Bathula, Chinna | Theerthagiri, J. | Bose, Ranjith | Yim, Chang-Joo | Kathalingam, A. | Seo, Young-Soo | Kim, Hyun-Seok
The use of lanthanum-anchored zinc oxide distorted hexagon (La@ZnO DH) nanoclusters as an active material for the photodegradation of rhodamine B (Rh–B) dye via hydrogen bonding, electrostatic, and π-π interactions is examined herein. The active photocatalyst is derived from porous zeolite imidazole frameworks (ZIF-8) via a combined ultrasonication and calcination process. The distorted hexagon nanocluster morphology with controlled surface area is shown to provide excellent catalytic activity, chemical stability and demarcated pore volume. In addition, the low bandgap (3.57 eV) of La@ZnO DH is shown to expand the degradation of Rh–B under irradiation of UV light as compared to the pristine ZIF-8-derived ZnO photocatalyst due to inhibited recombination of electrons and holes. The outstanding physicochemical stability and enhanced performance of La@ZnO DH could be ascribed to the synergistic interaction among La3+ particles and the ZnO nanoclusters and provide a route for their utilization as a promising catalyst for the detoxification of Rh–B.
Afficher plus [+] Moins [-]Effects of glyphosate spray-drift on plant flowering
2021
Strandberg, B. | Sørensen, P.B. | Bruus, M. | Bossi, R. | Dupont, Y.L. | Link, M. | Damgaard, C.F.
Recent studies have shown that sub-lethal doses of herbicides may affect plant flowering, however, no study has established a direct relationship between the concentrations of deposited herbicide and plant flowering. Here the aim was to investigate the relationship between herbicide spray drift deposited on non-target plants and plant flowering in a realistic agro-ecosystem setting. The concentrations of the herbicide glyphosate deposited on plants were estimated by measuring the concentration of a dye tracer applied together with the herbicide. The estimated maximal and average deposition of glyphosate within the experimental area corresponded to 30 g glyphosate/ha (2.08% of the label rate of 1440 g a.i./ha) and 2.4 g glyphosate/ha (0.15% label rate), respectively, and the concentrations decreased rapidly with increasing distance from the spraying track. However, there were not a unique relation between distance and deposition, which indicate that heterogeneities of turbulence, wind speed and/or direction can strongly influence the deposition from 1 min to another during spraying. The effects of glyphosate on cumulative flower numbers and flowering time were modelled using Gompertz growth models on four non-target species. Glyphosate had a significantly negative effect on the cumulative number of flowers on Trifolium pratense and Lotus corniculatus, whereas there were no significant effects on Trifolium repens, and a positive, but non-significant, effect on number of flowers on Cichorium intybus. Glyphosate did not affect the flowering time of any of the four species significantly. Lack of floral resources is known to be of major importance for pollinator declines. The implications of the presented results for pesticide risk assessment are discussed.
Afficher plus [+] Moins [-]Metal-organic framework MIL-100(Fe) for dye removal in aqueous solutions: Prediction by artificial neural network and response surface methodology modeling
2020
Jang, Ho-Young | Kang, Jin-Kyu | Park, Jeong-Ann | Lee, Seung-Chan | Kim, Sŏng-bae
In this study, a metal organic framework MIL-100(Fe) was synthesized for rhodamine B (RB) removal from aqueous solutions. An experimental design was conducted using a central composite design (CCD) method to obtain the RB adsorption data (n = 30) from batch experiments. In the CCD approach, solution pH, adsorbent dose, and initial RB concentration were included as input variables, whereas RB removal rate was employed as an output variable. Response surface methodology (RSM) and artificial neural network (ANN) modeling were performed using the adsorption data. In RSM modeling, the cubic regression model was developed, which was adequate to describe the RB adsorption according to analysis of variance. Meanwhile, the ANN model with the topology of 3:8:1 (three input variables, eight neurons in one hidden layer, and one output variable) was developed. In order to further compare the performance between the RSM and ANN models, additional adsorption data (n = 8) were produced under experimental conditions, which were randomly selected in the range of the input variables employed in the CCD matrix. The analysis showed that the ANN model (R² = 0.821) had better predictability than the RSM model (R² = 0.733) for the RB removal rate. Based on the ANN model, the optimum RB removal rate (>99.9%) was predicted at pH 5.3, adsorbent dose 2.0 g L−1, and initial RB concentration 73 mg L−1. In addition, pH was determined to be the most important input variable affecting the RB removal rate. This study demonstrated that the ANN model could be successfully employed to model and optimize RB adsorption to the MIL-100(Fe).
Afficher plus [+] Moins [-]