Affiner votre recherche
Résultats 1-10 de 1,933
Profiling of Polycyclic Aromatic Hydrocarbons and Diagnostic Ratios of Kpite Oil Spill Impacted Site in Rivers State, Nigeria
2021
Onojake, M. C. | Eromosele, G. O. | Osuji, Leo C.
Polycyclic Aromatic Hydrocarbon profile of Kpite oil spill impacted site in Rivers state, Nigeria was evaluated to determine the level of contamination of the soil. Four composite oil impacted soil samples were collected at different depths; surface (0-15cm) and subsurface (15-30cm) after a field reconnaissance. Extraction of the oil was carried out on the soil samples and the Polycyclic Aromatic Hydrocarbons were quantified using the Gas Chromatography- flame ionization detector. Results showed that Naphthalene was the most abundant in the range of 0.25 to 1.49 mg kg-1. Fluoranthene followed closely with concentrations in the range of 0.01 to 1.28 mg kg-1. PAHs like Benzo (k) fluoranthene, Benzo (e) pyrene, Dibenzo (a, h)anthracene, Indeno (1, 2, 3-cd) pyrene and Benzo (g, h, i) showed low concentrations of less than 0.01 indicating that strong weathering had occurred. The diagnostic ratios such as Phenanthrene/Anthracene (Phen/Anth), Benzo (a) anthracene Chrysene ((BaA)/Chry) and Fluoranthene/Pyrene (Flth/Py) and sum of chrysene/Phenanthrene ΣChry/ΣPhen were calculated and used to unravel the source of hydrocarbons. Results showed ratios of Flth/Py >1.0 and Phen/Anth ranges from 1.19 to 2.03 (< 10) which denote contamination sources, implying that the hydrocarbon sources are not just petrogenic but rather may due to contamination sources of combustion processes or the area was exposed to bush burning.
Afficher plus [+] Moins [-]Les modifications chimiques de l' atmosphere et leurs effets sur l' environnement.
1988
Megie G.
Charges critiques pour la vegetation.
1993
Thimonier A. | Dupouey J.L.
Silver fir decline in the Vosges mountains (France): role of climate and silviculture.
1989
Becker M. | Landmann G. | Levy G.
Fluxes of Cu, Zn, Pb, Cd, Cr, and Ni in temperate forest ecosystems. A literature review.
1989
Bergkvist B. | Folkeson L. | Berggren D.
Trace elements in the hydrologic cycle of a tolerant hardwood forest ecosystem.
1986
Foster N.W. | Nicolson J.A.
Effects of environmental concentrations of the fragrance amyl salicylate on the mediterranean mussel Mytilus galloprovincialis
2022
Bernardini, I. | Fabrello, J. | Vecchiato, M. | Ferraresso, S. | Babbucci, M. | Peruzza, L. | Rovere, G Dalla | Masiero, L. | Marin, M.G. | Bargelloni, L. | Gambaro, A. | Patarnello, T. | Matozzo, V. | Milan, M.
Amyl salicylate (AS) is a fragrance massively used as a personal care product and following the discharged in wastewaters may end up in the aquatic environment representing a potential threat for the ecosystem and living organisms. AS was recently detected in water of the Venice Lagoon, a vulnerable area continuously subjected to the income of anthropogenic chemicals. The lagoon is a relevant area for mollusc farming, including the Mediterranean mussels (Mytilus galloprovincialis) having an important economic and ecological role. Despite high levels of AS occurred in water of the Lagoon of Venice, no studies investigated the possible consequences of AS exposures on species inhabiting this ecosystem to date. For the first time, we applied a multidisciplinary approach to investigate the potential effects of the fragrance AS on Mediterranean mussels. To reach such a goal, bioaccumulation, cellular, biochemical, and molecular analyses (RNA-seq and microbiota characterization) were measured in mussels treated for 7 and 14 days with different AS Venice lagoon environmental levels (0.1 and 0.5 μg L⁻¹). Despite chemical investigations suggested low AS bioaccumulation capability, cellular and molecular analyses highlighted the disruption of several key cellular processes after the prolonged exposures to the high AS concentration. Among them, potential immunotoxicity and changes in transcriptional regulation of pathways involved in energy metabolism, stress response, apoptosis and cell death regulations have been observed. Conversely, exposure to the low AS concentration demonstrated weak transcriptional changes and transient increased representation of opportunistic pathogens, as Arcobacter genus and Vibrio aestuarianus. Summarizing, this study provides the first overview on the effects of AS on one of the most widely farmed mollusk species.
Afficher plus [+] Moins [-]Nitrous oxide emission in altered nitrogen cycle and implications for climate change
2022
Aryal, Babita | Gurung, Roshni | Camargo, Aline F. | Fongaro, Gislaine | Treichel, Helen | Mainali, Bandita | Angove, Michael J. | Ngo, Huu Hao | Guo, Wenshan | Puadel, Shukra Raj
Natural processes and human activities play a crucial role in changing the nitrogen cycle and increasing nitrous oxide (N₂O) emissions, which are accelerating at an unprecedented rate. N₂O has serious global warming potential (GWP), about 310 times higher than that of carbon dioxide. The food production, transportation, and energy required to sustain a world population of seven billion have required dramatic increases in the consumption of synthetic nitrogen (N) fertilizers and fossil fuels, leading to increased N₂O in air and water. These changes have radically disturbed the nitrogen cycle and reactive nitrogen species, such as nitrous oxide (N₂O), and have impacted the climatic system. Yet, systematic and comprehensive studies on various underlying processes and parameters in the altered nitrogen cycle, and their implications for the climatic system are still lacking. This paper reviews how the nitrogen cycle has been disturbed and altered by anthropogenic activities, with a central focus on potential pathways of N₂O generation. The authors also estimate the N₂O–N emission mainly due to anthropogenic activities will be around 8.316 Tg N₂O–N yr⁻¹ in 2050. In order to minimize and tackle the N₂O emissions and its consequences on the global ecosystem and climate change, holistic mitigation strategies and diverse adaptations, policy reforms, and public awareness are suggested as vital considerations. This study concludes that rapidly increasing anthropogenic perturbations, the identification of new microbial communities, and their role in mediating biogeochemical processes now shape the modern nitrogen cycle.
Afficher plus [+] Moins [-]Increased fluctuation of sulfur alleviates cadmium toxicity and exacerbates the expansion of Spartina alterniflora in coastal wetlands
2022
Wu, Yueming | Leng, Zhanrui | Li, Jian | Jia, Hui | Yan, Chongling | Hong, Hualong | Wang, Qiang | Lu, Yanyan | Du, Daolin
Evidence suggests that the invasion of Spartina alterniflora (S. alterniflora) poses potentially serious risks to the stability of coastal wetlands, an ecosystem that is extremely vulnerable to both biological and non-biological threats. However, the effects and mechanisms of sulfur (S) in mediating the growth and expansion of S. alterniflora are poorly understood, particularly when sediments are contaminated with cadmium (Cd). A 6-month greenhouse study was conducted to evaluate the mediating effect of S on Cd tolerance and growth of S. alterniflora. Treatments consisted of a factorial combination of three S rates (applied as Na₂SO₄; 0, 500, 1000 mg kg⁻¹ dry weight (DW), as S₀, S₅₀₀, and S₁₀₀₀) and four Cd rates (applied as CdCl₂; 0, 1, 2, 4 mg kg⁻¹ DW, as Cd₀, Cd₁, Cd₂, and Cd₄). Results showed that although the exogenous S supply obviously increased Cd accumulation in roots (up to 71.22 ± 6.43 mg kg⁻¹ DW) due to the decrease of Fe concentration in iron plaque (down to 4.02 ± 1.18 mg g⁻¹ DW), biomass reduction and oxidative stress in plant tissues were significantly alleviated. The addition of S significantly up-regulated the concentration of compounds related to Cd tolerance, including proline and glutathione. Therefore, the translocation of Cd was restricted, and plant growth was not impacted. The present study demonstrated that the exogenous sulfur supply could promote the growth of S. alterniflora and enhance its tolerance to Cd. Therefore, under the effects of S. alterniflora, the increased fluctuations of S pool caused by the release and deposition of S might further exacerbate S. alterniflora expansion in Cd contaminated coastal wetlands.
Afficher plus [+] Moins [-]A catastrophic change in a european protected wetland: From harmful phytoplankton blooms to fish and bird kill
2022
Demertzioglou, Maria | Genitsaris, Savvas | Mazaris, Antonios D. | Kyparissis, Aris | Voutsa, Dimitra | Kozari, Argyri | Kormas, Konstantinos Ar | Stefanidou, Natassa | Katsiapi, Matina | Michaloudi, Evangelia | Moustaka-Gouni, Maria
Understanding the processes that underlay an ecological disaster represents a major scientific challenge. Here, we investigated phytoplankton and zooplankton community changes before and during a fauna mass kill in a European protected wetland. Evidence on gradual development and collapse of harmful phytoplankton blooms, allowed us to delineate the biotic and abiotic interactions that led to this ecological disaster. Before the mass fauna kill, mixed blooms of known harmful cyanobacteria and the killer alga Prymnesium parvum altered biomass flow and minimized zooplankton resource use efficiency. These blooms collapsed under high nutrient concentrations and inhibitory ammonia levels, with low phytoplankton biomass leading to a dramatic drop in photosynthetic oxygenation and a shift to a heterotrophic ecosystem phase. Along with the phytoplankton collapse, extremely high numbers of red planktonic crustaceans-Daphnia magna, visible through satellite images, indicated low oxygen conditions as well as a decrease or absence of fish predation pressure. Our findings provide clear evidence that the mass episode of fish and birds kill resulted through severe changes in phytoplankton and zooplankton dynamics, and the alternation on key abiotic conditions. Our study highlights that plankton-related ecosystem functions mirror the accumulated heavy anthropogenic impacts on freshwaters and could reflect a failure in conservation and restoration measures.
Afficher plus [+] Moins [-]