Affiner votre recherche
Résultats 1-10 de 2,187
Modeling environmental indicators for land leveling, using Artificial Neural Networks and Adaptive Neuron-Fuzzy Inference System
2017
Alzoubi, Isham | Delavar, Mahmoud R. | Mirzaei, Farhad | Nadjar Arrabi, Babak
Land leveling is one of the most important steps in soil preparation and cultivation. Although land leveling with machines requires considerable amount of energy, it delivers a suitable surface slope with minimal soil deterioration as well as damage to plants and other organisms in the soil. Notwithstanding, in recent years researchers have tried to reduce fossil fuel consumption and its deleterious side effects, using new techniques such as Artificial Neural Networks (ANNs) and Adaptive Neuron-Fuzzy Inference System (Fuzzy shell-clustering algorithm) models that will lead to a noticeable improvement in the environment. The present research investigates the effects of various soil properties such as Embankment Volume, Soil Compressibility Factor, Specific Gravity, Moisture Content, Slope, Sand Percent, and Soil Swelling Index in energy consumption. The study consists of 90 samples, collected from three different regions. The grid size has been set on 20 m * 20 m from a farmland in Karaj Province, Iran. The aim is to determine the best linear model, using ANNs and ANFIS model to predict environmental indicatorsand find the best model for land leveling in terms of its output (i.e. Labor Energy, Fuel energy, Total Machinery Cost, and Total Machinery Energy). Results show that ANFIS can successfully predict labor energy, fuel energy, total machinery cost, and total machinery energy. All ANFIS-based models have R2 values above 0.995 and MSE values below 0.002 with higher accuracy in prediction, given their higher R2 value and lower RMSE value.
Afficher plus [+] Moins [-]Life Cycle Assessment of Crude Oil Processing by Energy Management Approach
2023
Naseri, kioumars | Noorpoor, Alireza | Razavian, Fatemeh | Khoshmaneshzadeh, Behnoush
The first future challenge facing human beings is to supply the world's energy needs. However, energy consumption and resource depletion in industrial processes are significantly increasing. Therefore, life cycle assessment can be an excellent tool to quantify resources and energy consumption in different parts of industrial processes. The combination of process simulation and assessment of process life cycle can be resources & energy consumption in different parts is quantified and can be significantly reduced by optimizing the process, energy wastage. The process stimulation is done by HYSIS software, then by collecting output data, energy and materials flow, life cycle assessment is conducted using SIMAPRO software. According to output of the release list, 1709 items are released into the environment, of which 396, 407, 340 items are released into the air, water, soil, respectively and 556 items are extracted from sources. The most appropriate procedure to assess the life cycle of crude oil processing is Cumulative Energy Demand and Cumulative Exergy Demand energy approach. Based on the first-order analysis, the highest consumption of resources and energy is in the crude oil transmission sector; (Road construction with 44.95 petajoules and transmission pipelines with 19.85 petajoules). Also, regarding the second-order analysis, the highest consumption of resources and energy is related to crude oil production processes with 1.65 petajoules per operation and desalination unit, medium voltage electricity consumption with 0.002194 petajoules and exergy of power lines with 0.00087 petajoules.
Afficher plus [+] Moins [-]Examining the Environmental Kuznets Curve in Sweden to Assess the Nexus of Economic Sectors
2021
Pakrooh, Parisa | Brännlund, Runar
To support the fulfillment of Sweden’s targets in term of climate change and economic growth, we need to do a distinct study to show the Environmental Kuznets Curve (EKC) pattern in different sector of the economy, as the GDP allocation, energy intensities, GHG emission, and technological development are different between sectors. This kind of study helps to figure out how the different sectors contribute to climate change and could appoint more particular and effective environment-energy policies. For this aim, we analyzed the existence of the EKC by implementing the ARDL Bound test approach in the whole and individual sectors of Sweden’s economy throughout 1990-2019. Our results indicated the contribution of a particular sector on total GHG emissions per capita. Results of the whole economy confirmed the EEKC hypothesis with a turning point in 1996, in which the AFF sector, unlike industry and service, had increased GHG emissions. Disaggregated sectoral analysis showed various results. The industry sector had efficient energy improvement. Policymakers should pay attention to AFF’s GHG emissions, as different sources of energy consumption had not impressive impact in both the short and long term. Also, effective fossil-related policies are necessary for the service sector due to the main contribution to transportation.
Afficher plus [+] Moins [-]Developing an Environmental-Friendly Trend of Thermal and Electrical Load Profiles in Ilam Industrial Town
2021
Taheri, Ramezan | Nasrabadi, Touraj | Yousefi, Hossein
Recently, making use of emerging fuels such as municipal waste has been proposed as an alternative for conventional fuels and also as a way for municipal waste disposal. This research, while modeling the thermal and electrical profiles of Ilam Industrial Town, examines the possibility of supplying the required fuel from municipal waste by the year 2041. For this purpose, different combined heat and power (CHP) scenarios were implemented in the LEAP software. According to the results, electricity generation will start gradually from the year of operation of the power plants in 2025 and reach more than 4.3 GWh in 2026. The production process will be incremental and is expected to reach 115.9, 119.1, 111.8, 118.4, 123.1, 118.9, 118.4, 118.4 GWh, respectively under the scenarios of gasifier CHP, CHP turbine incinerator, CHP steam incinerator, landfill CHP, syngas CHP, anaerobic digester CHP, combined gasifier and incinerator CHP, and ultimately improve to 118.9 GWh under the scenario of optimized gasifier and incinerator CHP. The required power plant capacity under the above-mentioned scenarios is expected to be approximately 21 MW by the year 2041and modify to 20.5 MW under the optimization scenario. The incinerator, combined-incinerator-and-gasifier, and optimization scenarios meet the supply and demand conditions of the generated waste, and in other scenarios, either the CHP supply share should be lower than 50% or the additional waste should be supplied from the nearby villages and towns.
Afficher plus [+] Moins [-]Microplastics can aggravate the impact of ocean acidification on the health of mussels: Insights from physiological performance, immunity and byssus properties
2022
Huang, Xizhi | Leung, Jonathan Y.S. | Hu, Menghong | Xu, Elvis Genbo | Wang, Youji
Ocean acidification may increase the risk of disease outbreaks that would challenge the future persistence of marine organisms if their immune system and capacity to produce vital structures for survival (e.g., byssus threads produced by bivalves) are compromised by acidified seawater. These potential adverse effects may be exacerbated by microplastic pollution, which is forecast to co-occur with ocean acidification in the future. Thus, we evaluated the impact of ocean acidification and microplastics on the health of a mussel species (Mytilus coruscus) by assessing its physiological performance, immunity and byssus properties. We found that ocean acidification and microplastics not only reduced hemocyte concentration and viability due to elevated oxidative stress, but also undermined phagocytic activity of hemocytes due to lowered energy budget of mussels, which was in turn caused by the reduced feeding performance and energy assimilation. Byssus quality (strength and extensibility) and production were also reduced by ocean acidification and microplastics. To increase the chance of survival with these stressors, the mussels prioritized the synthesis of some byssus proteins (Mfp-4 and Mfp-5) to help maintain adhesion to substrata. Nevertheless, our findings suggest that co-occurrence of ocean acidification and microplastic pollution would increase the susceptibility of bivalves to infectious diseases and dislodgement risk, thereby threatening their survival and undermining their ecological contributions to the community.
Afficher plus [+] Moins [-]Microbial metabolic limitation of rhizosphere under heavy metal stress: Evidence from soil ecoenzymatic stoichiometry
2022
Duan, Chengjiao | Wang, Yuhan | Wang, Qiang | Ju, Wenliang | Zhang, Zhiqin | Cui, Yongxing | Beiyuan, Jingzi | Fan, Qiaohui | Wei, Shiyong | Li, Shiqing | Fang, Linchuan
Slow nutrient turnover and destructed soil function were the main factors causing low efficiency in phytoremediation of heavy metal (HM)-contaminated soil. Soil ecoenzymatic stoichiometry can reflect the ability of soil microorganisms to acquire energy and nutrients, and drive nutrient cycling and carbon (C) decomposition in HM-contaminated soil. Therefore, for the first time, we used the enzymatic stoichiometry modeling to examine the microbial nutrient limitation in rhizospheric and bulk soil of different plants (Medicago sativa, Halogeton arachnoideus and Agropyron cristatum) near the Baiyin Copper Mine. Results showed that the main pollutants in this area were Cu, Zn, Cd, and Pb, while Cd and Zn have the greatest contribution according to the analysis of pollution load index (PLI). The activities of soil C-, nitrogen (N)-, and phosphorus (P)-acquiring enzymes in the rhizosphere of plants were significantly greater than that in bulk soil. Moreover, microbial C and P limitations were observed in all plant treatments, while the lower limitation was generally in the rhizosphere compared to bulk soil. The HM stress significantly increased microbial C limitation and decreased microbial P limitation, especially in the rhizospheric soil. The partial least squares path modeling (PLS-PM) further indicated that HM concentration has the greatest effects on microbial P limitation (−0.64). In addition, the highest enzyme activities and the lowest P limitation were observed in the rhizospheric and bulk soil of M. sativa, thereby implying that soil microbial communities under the remediation of M. sativa were steadier and more efficient in terms of their metabolism. These findings are important for the elucidation of the nutrient cycling and microbial metabolism of rhizosphere under phytoremediation, and provide guidance for the restoration of HM-contaminated soil.
Afficher plus [+] Moins [-]Bioelectrochemical degradation of petroleum hydrocarbons: A critical review and future perspectives
2022
He, Yuqing | Zhou, Qixing | Mo, Fan | Li, Tian | Liu, Jianv
As typical pollutants, petroleum hydrocarbons that are widely present in various environmental media such as soil, water, sediments, and air, seriously endanger living organisms and human health. In the meantime, as a green environmental technology that integrates pollutant removal and resource recovery, bioelectrochemical systems (BESs) have been extensively applied to the removal of petroleum hydrocarbons from the environment. This review introduces working principles of BESs, following which it discusses the different reactor structures, application progresses, and key optimization factors when treating water, sewage sludges, sediments, and soil. Furthermore, bibliometrics was first used in this field to analyze the evolution of knowledge structure and forecast future hot topics. The research focus has shifted from the early generation of bioelectric energy to exploring mechanisms of soil remediation and microbial metabolisms, which will be closely integrated in the future. Finally, the future prospects of this field are proposed. This review focuses on the research status of bioelectrochemical degradation of petroleum hydrocarbons and provides a scientific reference for subsequent research.
Afficher plus [+] Moins [-]Adsorption of microplastics on aquifer media: Effects of the action time, initial concentration, ionic strength, ionic types and dissolved organic matter
2022
Li, Shuo | Yang, Mingxiang | Wang, Hao | Jiang, Yunzhong
The adsorption of microplastic (MPs) on aquifer media is affected by their own properties and environmental factors. Research results have shown that the adsorption capacity of MPs on the three media has the following order: fine sand > medium sand > coarse sand, and the adsorption equilibrium times are 8 h, 12 h and 24 h, respectively. The adsorption process has three stages (fast linear distribution, slow adsorption and equilibrium stability), and the action law is compounded by the pseudo-second-order kinetic equation. After adsorption, MPs were observed on the three media, and there were single existence and aggregation phenomena. The energy spectrum analysis indicates that elemental carbon (C) appears on the surface of the medium after the action occurs, and the surface of the media adsorbs MPs to varying degrees. According to the results of infrared spectroscopy, after action, the peak areas of the absorption peaks at 680-880 cm⁻¹ and 1450-1620 cm⁻¹ increase. The absorption peaks are mainly C–H out-of-plane bending vibrations from aromatic hydrocarbons and C–H stretching vibrations on the benzene ring skeleton. As the initial concentration increases, the equilibrium adsorption capacity increases linearly. The isothermal adsorption of MPs in porous media conforms to the Freundlich model. The adsorption process is also affected by different anions and cations. The higher the ionic strength of NH₄⁺ is, the weaker the electrostatic effect of negatively charged MPs, thereby increasing the adsorption capacity of microplastics on porous media. Ca²⁺ can promote the adsorption of MPs by the media through the formation of ternary complexes between cations, MPs and surface functional groups. The increase in SO₄²⁻ and HCO₃⁻ concentrations gradually inhibits the adsorption of MPs.
Afficher plus [+] Moins [-]Decrease in life expectancy due to COVID-19 disease not offset by reduced environmental impacts associated with lockdowns in Italy
2022
Rugani, Benedetto | Conticini, Edoardo | Frediani, Bruno | Caro, Dario
The consequence of the lockdowns implemented to address the COVID-19 pandemic on human health damage due to air pollution and other environmental issues must be better understood. This paper analyses the effect of reducing energy demand on the evolution of environmental impacts during the occurrence of 2020-lockdown periods in Italy, with a specific focus on life expectancy. An energy metabolism analysis is conducted based on the life cycle assessment (LCA) of all monthly energy consumptions, by sector, category and province area in Italy between January 2015 to December 2020. Results show a general decrease (by ∼5% on average) of the LCA midpoint impact categories (global warming, stratospheric ozone depletion, fine particulate matter formation, etc.) over the entire year 2020 when compared to past years. These avoided impacts, mainly due to reductions in fossil energy consumptions, are meaningful during the first lockdown phase between March and May 2020 (by ∼21% on average). Regarding the LCA endpoint damage on human health, ∼66 Disability Adjusted Life Years (DALYs) per 100,000 inhabitants are estimated to be saved. The analysis shows that the magnitude of the officially recorded casualties is substantially larger than the estimated gains in human lives due to the environmental impact reductions. Future research could therefore investigate the complex cause-effect relationships between the deaths occurred in 2020 imputed to COVID-19 disease and co-factors other than the SARS-CoV-2 virus.
Afficher plus [+] Moins [-]Nitrous oxide emission in altered nitrogen cycle and implications for climate change
2022
Aryal, Babita | Gurung, Roshni | Camargo, Aline F. | Fongaro, Gislaine | Treichel, Helen | Mainali, Bandita | Angove, Michael J. | Ngo, Huu Hao | Guo, Wenshan | Puadel, Shukra Raj
Natural processes and human activities play a crucial role in changing the nitrogen cycle and increasing nitrous oxide (N₂O) emissions, which are accelerating at an unprecedented rate. N₂O has serious global warming potential (GWP), about 310 times higher than that of carbon dioxide. The food production, transportation, and energy required to sustain a world population of seven billion have required dramatic increases in the consumption of synthetic nitrogen (N) fertilizers and fossil fuels, leading to increased N₂O in air and water. These changes have radically disturbed the nitrogen cycle and reactive nitrogen species, such as nitrous oxide (N₂O), and have impacted the climatic system. Yet, systematic and comprehensive studies on various underlying processes and parameters in the altered nitrogen cycle, and their implications for the climatic system are still lacking. This paper reviews how the nitrogen cycle has been disturbed and altered by anthropogenic activities, with a central focus on potential pathways of N₂O generation. The authors also estimate the N₂O–N emission mainly due to anthropogenic activities will be around 8.316 Tg N₂O–N yr⁻¹ in 2050. In order to minimize and tackle the N₂O emissions and its consequences on the global ecosystem and climate change, holistic mitigation strategies and diverse adaptations, policy reforms, and public awareness are suggested as vital considerations. This study concludes that rapidly increasing anthropogenic perturbations, the identification of new microbial communities, and their role in mediating biogeochemical processes now shape the modern nitrogen cycle.
Afficher plus [+] Moins [-]