Affiner votre recherche
Résultats 1-10 de 100
Les enquetes epidemiologiques des effets de la pollution atmospherique sur la sante: discussion a propos d' un cas.
1992
Kondakis X.G. | Fragoulia A. | Tselentis V.
Wastewater based epidemiology as a public health resource in low- and middle-income settings
2024
Hamilton, Katie A. | Wade, M.J. | Barnes, K.G. | Street, R.A. | Paterson, S.
In the face of emerging and re-emerging diseases, novel and innovative approaches to population scale surveillance are necessary for the early detection and quantification of pathogens. The last decade has seen the rapid development of wastewater and environmental surveillance (WES) to address public health challenges, which has led to establishment of wastewater-based epidemiology (WBE) approaches being deployed to monitor a range of health hazards. WBE exploits the fact that excretions and secretions from urine, and from the gut are discharged in wastewater, particularly sewage, such that sampling sewage systems provides an early warning system for disease outbreaks by providing an early indication of pathogen circulation. While WBE has been mainly used in locations with networked wastewater systems, here we consider its value for less connected populations typical of lower-income settings, and assess the opportunity afforded by pit latrines to sample communities and localities. We propose that where populations struggle to access health and diagnostic facilities, and despite several additional challenges, sampling unconnected wastewater systems remains an important means to monitor the health of large populations in a relatively cost-effective manner.
Afficher plus [+] Moins [-]Health impacts of artificial turf: Toxicity studies, challenges, and future directions
2022
Murphy, Maire | Warner, Genoa R.
Many communities around the country are undergoing contentious battles over the installation of artificial turf. Opponents are concerned about exposure to hazardous chemicals leaching from the crumb rubber cushioning fill made of recycled tires, the plastic carpet, and other synthetic components. Numerous studies have shown that chemicals identified in artificial turf, including polycyclic aromatic hydrocarbons (PAHs), phthalates, and per- and polyfluoroalkyl substances (PFAS), are known carcinogens, neurotoxicants, mutagens, and endocrine disruptors. However, few studies have looked directly at health outcomes of exposure to these chemicals in the context of artificial turf. Ecotoxicology studies in invertebrates exposed to crumb rubber have identified risks to organisms whose habitats have been contaminated by artificial turf. Chicken eggs injected with crumb rubber leachate also showed impaired development and endocrine disruption. The only human epidemiology studies conducted related to artificial turf have been highly limited in design, focusing on cancer incidence. In addition, government agencies have begun their own risk assessment studies to aid community decisions. Additional studies in in vitro and in vivo translational models, ecotoxicological systems, and human epidemiology are strongly needed to consider exposure from both field use and runoff, components other than crumb rubber, sensitive windows of development, and additional physiological endpoints. Identification of potential health effects from exposures due to spending time at artificial turf fields and adjacent environments that may be contaminated by runoff will aid in risk assessment and community decision making on the use of artificial turf.
Afficher plus [+] Moins [-]Multisystemic alterations in humans induced by bisphenol A and phthalates: Experimental, epidemiological and clinical studies reveal the need to change health policies
2021
Martínez-Ibarra, A. | Martínez-Razo, L.D. | MacDonald-Ramos, K. | Morales-Pacheco, M. | Vázquez-Martínez, E.R. | López-López, M. | Rodríguez Dorantes, M. | Cerbón, M.
A vast amount of evidence indicates that bisphenol A (BPA) and phthalates are widely distributed in the environment since these compounds are mass-produced for the manufacture of plastics and plasticizers. These compounds belong to a large group of substances termed endocrine-disrupting chemicals (EDC). It is well known that humans and living organisms are unavoidably and unintentionally exposed to BPA and phthalates from food packaging materials and many other everyday products. BPA and phthalates exert their effect by interfering with hormone synthesis, bioavailability, and action, thereby altering cellular proliferation and differentiation, tissue development, and the regulation of several physiological processes. In fact, these EDC can alter fetal programming at an epigenetic level, which can be transgenerational transmitted and may be involved in the development of various chronic pathologies later in the adulthood, including metabolic, reproductive and degenerative diseases, and certain types of cancer.In this review, we describe the most recent proposed mechanisms of action of these EDC and offer a compelling selection of experimental, epidemiological and clinical studies, which show evidence of how exposure to these pollutants affects our health during development, and their association with a wide range of reproductive, metabolic and neurological diseases, as well as hormone-related cancers. We stress the importance of concern in the general population and the urgent need for the medical health care system to closely monitor EDC levels in the population due to unavoidable and involuntary exposure to these pollutants and their impact on human health.
Afficher plus [+] Moins [-]Prospects for ozone pollution control in China: An epidemiological perspective
2021
Li, Ang | Zhou, Quan | Xu, Qun
Severe surface ozone pollution has become widespread in China. To protect public health, Chinese scientific communities and government agencies have striven to mitigate ozone pollution. However, makers of pollution mitigation policies rarely consider epidemiological research, and communication between epidemiological researchers and the government is poor. Therefore, this article reviews the current mitigation policies and the National Ambient Air Quality Standard (NAAQS) for ozone from an epidemiological perspective and proposes recommendations for researchers and policy makers on the basis of epidemiological evidence. We review current nationwide ozone control measures for mitigating ozone pollution from four dimensions: the integration of ozone and particulate matter control, ozone precursors control, ozone control in different seasons, and regional cooperation on the prevention of ozone pollution. In addition, we present environmental and epidemiological evidence and propose recommendations and discuss relevant ozone metrics and the criteria values of the NAAQS. We finally conclude that the disease burden attributable to ozone exposure in China may be underestimated and that the epidemiological research regarding the health effects of integrating ozone and particulate matter control is insufficient. Furthermore, atmospheric volatile organic compounds are severely detrimental to health, and related control policies are urgently required in China. We recommend a greater focus on winter ozone pollution and conclude that the health benefits of regional cooperation on ozone control and prevention are salient. We argue that daily average ozone concentration may be a more biologically relevant ozone metric than those currently used by the NAAQS, and accumulating epidemiological evidence supports revision of the standards. This review provides new insight for ozone mitigation policies and related epidemiological studies in China.
Afficher plus [+] Moins [-]Associations between renal functions and exposure of arsenic and polycyclic aromatic hydrocarbon in adults living near a petrochemical complex
2020
Yuan, Tzu-Hsuen | Ke, Deng-Yuan | Wang, Joyce En-Hua | Chan, Chang-Chuan
The understanding for the impact of petrochemical pollutants exposure on renal functions is limited.Our study examined the associations between renal functions and pollutants exposure in adult residents living in the vicinity of a petrochemical industry.We recruited 2069 adult residents near a big petrochemical complex in Taiwan in 2009–2012, and they were categorized into high exposure (HE) and low exposure (LE) groups based on their address to source by 10 km radius. Study subjects were measured the urinary levels of arsenic, cadmium, mercury, thallium, and 1-hydroxypyrene (1-OHP). The estimated glomerular filtration rate (eGFR) was calculated using the Taiwanese Chronic Kidney Disease Epidemiology Collaboration equation, and the chronic kidney disease (CKD) prevalence and risks were defined according to KDIGO 2012 guidelines. Adjusted generalized linear and logistic regression models were applied to evaluate the associations between petrochemical exposure and renal functions.Subjects in the HE areas had significantly lower eGFR, higher CKD prevalence, and higher levels of urinary arsenic, cadmium, mercury, thallium and 1-OHP. The closer to complex and high exposure group of study subjects were significantly associated with the decrease in eGFR, higher ORs for CKD and high-intermediate risk of CKD. In addition, the study subjects who had two-fold urinary arsenic and 1-OHP levels were significantly with decreased 0.68 and 0.49 ml/min/1.73 m2 of eGFR, respectively.Residing closer and higher arsenic and polycyclic aromatic hydrocarbon exposure were associated with the renal impairment and risks of CKD among the residential population near the petrochemical industry.
Afficher plus [+] Moins [-]Long-term exposure to outdoor and household air pollution and blood pressure in the Prospective Urban and Rural Epidemiological (PURE) study
2020
Arku, Raphael E. | Bräuer, Michael | Ahmed, Suad H. | AlHabib, Khalid F. | Avezum, Alvaro | Bo, Jian | Choudhury, Tarzia | Dans, Antonio ML. | Gupta, Rajiv | Iqbal, Romaina | Ismail, Noorhassim | Kelishadi, Roya | Khatib, Rasha | Koon, Teo | Kumar, Rajesh | Lanas, Fernando | Lear, Scott A. | Wei, Li | Lopez-Jaramillo, Patricio | Mohan, Viswanathan | Poirier, Paul | Puoane, Thandi | Rangarajan, Sumathy | Rosengren, Annika | Soman, Biju | Caklili, Ozge Telci | Yang, Shunyun | Yeates, Karen | Yin, Lu | Yusoff, Khalid | Zatoński, Tomasz | Yūsuf, Sālim | Hystad, Perry
Exposure to air pollution has been linked to elevated blood pressure (BP) and hypertension, but most research has focused on short-term (hours, days, or months) exposures at relatively low concentrations. We examined the associations between long-term (3-year average) concentrations of outdoor PM₂.₅ and household air pollution (HAP) from cooking with solid fuels with BP and hypertension in the Prospective Urban and Rural Epidemiology (PURE) study. Outdoor PM₂.₅ exposures were estimated at year of enrollment for 137,809 adults aged 35–70 years from 640 urban and rural communities in 21 countries using satellite and ground-based methods. Primary use of solid fuel for cooking was used as an indicator of HAP exposure, with analyses restricted to rural participants (n = 43,313) in 27 study centers in 10 countries. BP was measured following a standardized procedure and associations with air pollution examined with mixed-effect regression models, after adjustment for a comprehensive set of potential confounding factors. Baseline outdoor PM₂.₅ exposure ranged from 3 to 97 μg/m³ across study communities and was associated with an increased odds ratio (OR) of 1.04 (95% CI: 1.01, 1.07) for hypertension, per 10 μg/m³ increase in concentration. This association demonstrated non-linearity and was strongest for the fourth (PM₂.₅ > 62 μg/m³) compared to the first (PM₂.₅ < 14 μg/m³) quartiles (OR = 1.36, 95% CI: 1.10, 1.69). Similar non-linear patterns were observed for systolic BP (β = 2.15 mmHg, 95% CI: −0.59, 4.89) and diastolic BP (β = 1.35, 95% CI: −0.20, 2.89), while there was no overall increase in ORs across the full exposure distribution. Individuals who used solid fuels for cooking had lower BP measures compared to clean fuel users (e.g. 34% of solid fuels users compared to 42% of clean fuel users had hypertension), and even in fully adjusted models had slightly decreased odds of hypertension (OR = 0.93; 95% CI: 0.88, 0.99) and reductions in systolic (−0.51 mmHg; 95% CI: −0.99, −0.03) and diastolic (−0.46 mmHg; 95% CI: −0.75, −0.18) BP. In this large international multi-center study, chronic exposures to outdoor PM₂.₅ was associated with increased BP and hypertension while there were small inverse associations with HAP.
Afficher plus [+] Moins [-]High and low temperatures aggravate airway inflammation of asthma: Evidence in a mouse model
2020
Deng, Linjing | Ma, Ping | Wu, Yang | Ma, Yongsheng | Yang, Xu | Li, Yuguo | Deng, Qihong
Epidemiology suggests ambient temperature is the triggers and potential activator of asthma. The role of high and low temperatures on airway inflammation of asthma, and the underlying molecular mechanism are not yet understood. A mouse model of asthma was adopted in our experiment. The BALB/c mice were exposed at different temperature for 4 h (2 h in the morning and 2 h in the afternoon) on weekday. The exposure temperatures were 10 °C, 24 °C and 40 °C. Ovalbumin (OVA) was used to sensitize the mice on days 14, 18, 22, 26, and 30, followed by an aerosol challenge for 30 min from day 32–38. After the final OVA challenge, lung function, serum protein and pulmonary inflammation were assessed. Comparing the OVA with the saline group at 24 °C, we saw a significant increase in: serum Total-IgE (p < 0.05); OVA-sIgE (p < 0.01); IL-4 (p < 0.05); IL-1β (p < 0.01); IL-6 (p < 0.01); TNF-α (p < 0.01); and the ratio of IL-4/IFN-γ (p < 0.01). At the same time, there was a significant decrease in IFN-γ (p < 0.01). As the temperature increase, there is a U shape for immune proteins and pro-inflammatory factors with a peak value at 24 °C, exception for IFN-γ (inverted U-shape). After the high and low temperature exposure, the Ri and Re increased significantly, while Cldyn decreased significantly compared with the 24 °C group. Histopathological analysis of the OVA groups showed airway remodeling, airway wall thickening and deforming, and subepithelial fibrosis. More obvious changes were found in the high and low temperature exposure groups. The immunohistochemistry suggested that TRPs changed with temperatures. High and low temperatures can aggravate airway inflammation in a mouse model of asthma. TRPs play an important role in temperature aggravation of allergic asthma. The results suggest that asthmatics should avoid exposure to high and low temperatures for too long time.
Afficher plus [+] Moins [-]A spatio-temporally weighted hybrid model to improve estimates of personal PM2.5 exposure: Incorporating big data from multiple data sources
2019
Ben, YuJie | Ma, FuJun | Wang, Hao | Hassan, Muhammad Azher | Yevheniia, Romanenko | Fan, WenHong | Li, Yubiao | Dong, ZhaoMin
An accurate estimation of population exposure to particulate matter with an aerodynamic diameter <2.5 μm (PM₂.₅) is crucial to hazard assessment and epidemiology. This study integrated annual data from 1146 in-home air monitors, air quality monitoring network, public applications, and traffic smart cards to determine the pattern of PM₂.₅ concentrations and activities in different microenvironments (including outdoors, indoors, subways, buses, and cars). By combining massive amounts of signaling data from cell phones, this study applied a spatio-temporally weighted model to improve the estimation of PM₂.₅ exposure. Using Shanghai as a case study, the annual average indoor PM₂.₅ concentration was estimated to be 29.3 ± 27.1 μg/m³ (n = 365), with an average infiltration factor of 0.63. The spatio-temporally weighted PM₂.₅ exposure was estimated to be 32.1 ± 13.9 μg/m³ (n = 365), with indoor PM₂.₅ contributing the most (85.1%), followed by outdoor (7.6%), bus (3.7%), subway (3.1%), and car (0.5%). However, considering that outdoor PM₂.₅ makes a significant contribution to indoor PM₂.₅, outdoor PM₂.₅ was responsible for most of the exposure in Shanghai. A heatmap of PM₂.₅ exposure indicated that the inner-city exposure index was significantly higher than that of the outskirts city, which demonstrated that the importance of spatial differences in population exposure estimation.
Afficher plus [+] Moins [-]Using cell phone location to assess misclassification errors in air pollution exposure estimation
2018
Yu, Haofei | Russell, Armistead | Mulholland, James | Huang, Zhijiong
Air pollution epidemiologic and health impact studies often rely on home addresses to estimate individual subject's pollution exposure. In this study, we used detailed cell phone location data, the call detail record (CDR), to account for the impact of spatiotemporal subject mobility on estimates of ambient air pollutant exposure. This approach was applied on a sample with 9886 unique simcard IDs in Shenzhen, China, on one mid-week day in October 2013. Hourly ambient concentrations of six chosen pollutants were simulated by the Community Multi-scale Air Quality model fused with observational data, and matched with detailed location data for these IDs. The results were compared with exposure estimates using home addresses to assess potential exposure misclassification errors. We found the misclassifications errors are likely to be substantial when home location alone is applied. The CDR based approach indicates that the home based approach tends to over-estimate exposures for subjects with higher exposure levels and under-estimate exposures for those with lower exposure levels. Our results show that the cell phone location based approach can be used to assess exposure misclassification error and has the potential for improving exposure estimates in air pollution epidemiology studies.
Afficher plus [+] Moins [-]