Affiner votre recherche
Résultats 1-4 de 4
Rare earth elements and hypertension risk among housewives: A pilot study in Shanxi Province, China
2017
Wang, Bin | Yan, Lailai | Huo, Wenhua | Lu, Qun | Cheng, Zixi | Zhang, Jingxu | Li, Zhiwen
Studies have shown that residents living near rare earth mining areas have high concentrations of rare earth elements (REEs) in their hair. However, the adverse effects of REEs on human health have rarely been the focus of epidemiological studies. The goal of this study was to evaluate the relationship between REEs in hair and the risk of hypertension in housewives. We recruited 398 housewives in Shanxi Province, China, consisting of 163 women with hypertension (cases) and 235 healthy women without hypertension (controls). We analyzed 15 REEs (lanthanum (La), samarium (Sm), europium (Eu), gadolinium (Gd), terbium (Tb), dysprosium (Dy), holmium (Ho), erbium (Er), thulium (Tm), ytterbium (Yb), lutetium (Lu), Yttrium (Y), cerium (Ce), praseodymium (Pr), and neodymium (Nd)) and calcium (Ca) accumulated in housewives hair over a period of two years. The results revealed that, with the exception of Eu, concentrations of the REEs in hair were higher in the cases than in the controls. The univariate odds ratios (ORs) of the 14 REEs were >1, and four of the REEs (Dy, Tm, Yb, and Y) also had adjusted ORs > 1. The increasing dose-response trends of the four REEs further indicated the potential for increased hypertension risk. Moreover, the REEs were negatively correlated with Ca content in hair. These results might suggest an antagonistic effect of REEs on Ca in the human body. It was concluded that high intake of REEs might increase the risk of hypertension among housewives.
Afficher plus [+] Moins [-]Trace elements in hazardous mineral fibres
2016
Both occupational and environmental exposure to asbestos-mineral fibres can be associated with lung diseases. The pathogenic effects are related to the dimension, biopersistence and chemical composition of the fibres. In addition to the major mineral elements, mineral fibres contain trace elements and their content may play a role in fibre toxicity. To shed light on the role of trace elements in asbestos carcinogenesis, knowledge on their concentration in asbestos-mineral fibres is mandatory. It is possible that trace elements play a synergetic factor in the pathogenesis of diseases caused by the inhalation of mineral fibres. In this paper, the concentration levels of trace elements from three chrysotile samples, four amphibole asbestos samples (UICC amosite, UICC anthophyllite, UICC crocidolite and tremolite) and fibrous erionite from Jersey, Nevada (USA) were determined using inductively coupled plasma mass spectrometry (ICP-MS). For all samples, the following trace elements were measured: Li, Be, Sc, V, Cr, Mn, Co, Ni, Cu, Zn, As, Rb, Sr, Y, Sb, Cs, Ba, La, Pb, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu, Th, U. Their distribution in the various mineral species is thoroughly discussed.The obtained results indicate that the amount of trace metals such as Mn, Cr, Co, Ni, Cu and Zn is higher in anthophyllite and chrysotile samples, whereas the amount of rare earth elements (REE) is higher in erionite and tremolite samples. The results of this work can be useful to the pathologists and biochemists who use asbestos minerals and fibrous erionite in-vitro studies as positive cyto- and geno-toxic standard references.
Afficher plus [+] Moins [-]Cerium and erbium effects on Daphnia magna generations: A multiple endpoints approach
2019
Galdiero, E. | Carotenuto, R. | Siciliano, A. | Libralato, G. | Race, M. | Lofrano, G. | Fabbricino, M. | Guida, M.
Cerium (Ce, CeCl₃) and Erbium (Er, ErCl₃) are increasingly used in many electronic devices facilitating the alteration of their biogeochemical cycles (e.g. e-waste). Previous surveys stated that their environmental concentrations due to natural or anthropogenic events can reach up to 161 μg/L in ore mine effluent for Ce with a mean water concentration of 0.79 μg/L, and 11.9 μg/L for Er in ore mine effluents with a mean water concentration of 0.004 μg/L. Their potential effects onto aquatic organisms are still relatively unexplored. In this study, long-term multigenerational effects on Daphnia magna were assessed using various exposure times (3, 7, 14, and 21 days) in three generations (F0, F1 and F2). Each generation was exposed to environmental concentrations of Ce and Er (0.54 and 0.43 μg/L, respectively – mean values) and effects included organisms' size, parental reproduction, and survival, determination of reactive oxygen species (ROS), enzymatic activity (superoxide dismutase (SOD), catalase (CAT), and glutathione S-transferase (GST)), gene expression of ATP-binding cassette (ABC) transporter, and uptake.Results evidenced that chronic multi-generational exposure of daphnids to Ce and Er reduced survival, growth and reproduction, decreasing ROS, SOD and CAT from F0 to F2. Ce reduced the number of generated offsprings after each generation, while Er delayed the time of offsprings emergence, but not their number. ROS, SOD, CAT and GST evidenced that Er is slightly more toxic than Ce. Up- and downregulation of genes was limited, but Ce and Er activated the ABC transporters. Uptake of Ce and Er decreased through exposure time and generations.
Afficher plus [+] Moins [-]Multifunctional and smart Er2O3–ZnO nanocomposites for electronic ceramic varistors and visible light degradation of wastewater treatment
2022
AlAbdulaal, Thekrayat | AlShadidi, Manal | Hussien, Mai | Ganesh, Vanga | Bouzidi, Abdel-Fatah | Rafique, Saqib | Algarni, Hamed | Zahran, Heba | ʻAbd al-Wahhāb, Muḥammad | Yahia, Ibrahim
In this proposed study, erbium (Er³⁺)-doped ZnO nanocomposites were prepared through the effective, basic, and green combustion method. The significant effects of Er dopants on the structural, morphological features, dielectric, and optical behaviors of the pure ZnO matrix as well as Er₂O₃–ZnO nanostructured materials were investigated applying X-ray diffraction (XRD), scanning electron microscopy (SEM), Fourier transformation infrared (FT-IR) spectroscopy, and UV–Vis spectrophotometer techniques. These results showed that the synthesized Er₂O₃–ZnO nanocomposites are well polycrystalline. The Er₂O₃–ZnO nanocomposites are almost uniformly distributed on the surface morphologies. Furthermore, UV–Vis diffuse reflectance spectroscopy, AC electrical conductivity, and dielectric properties’ current–voltage characteristics were utilized to examine the influence of erbium doping on the optical properties, energy bandgaps of the proposed Er₂O₃–ZnO nanostructured powder. The tested nano-samples were applied for the visible light photodegradation of p-chlorophenol(4-CP) and p-nitrophenol (4-NP). The Er-doped ZnO ratio affects the photocatalytic activity of the ZnO matrix. This current research substantiated that more than 99.5% of 4-CP and 4-NP were photodegraded through 30 min of irradiation. Four times, the Er:ZnO nanocatalysts were used and still displayed an efficiency of more than 96.5% for 4-CP and 4-NP degradations in the specified period of 30 min. The as-prepared Er₂O₃–ZnO nanostructures are considered novel potential candidates in broad nano-applications from visible photocatalytic degradation of waste pollutants to the electronic varistor devices.
Afficher plus [+] Moins [-]