Affiner votre recherche
Résultats 1-10 de 47
Effects of co-exposure to 900 MHz radiofrequency electromagnetic fields and high-level noise on sleep, weight, and food intake parameters in juvenile rats Texte intégral
2020
Bosquillon de Jenlis, Aymar | Del Vecchio, Flavia | Delanaud, Stéphane | Bach, Véronique | Pelletier, Amandine
Electrohypersensitive people attribute various symptoms to exposure of radiofrequency electromagnetic fields (RF-EMF); sleep disturbance is the most frequently cited. However, laboratory experiments have yielded conflicting results regarding sleep alterations. Our hypothesis was that exposure to RF-EMF alone would lead to slight or non-significant effects but that co-exposure to RF-EMFs and other environmental constraints (such as noise) would lead to significant effects.3-week-old male Wistar rats (4 groups, n = 12 per group) were exposed for 5 weeks to continuous RF-EMF (900 MHz, 1.8 V/m, SAR = 30 mW/kg) in the presence or absence of high-level noise (87.5 dB, 50–20000 Hz) during the rest period. After 5 weeks of exposure, sleep (24 h recording), food and water intakes, and body weight were recorded with or without RF-EMF and/or noise. At the end of this recording period, sleep was scored during the 1 h resttime in the absence of noise and of RF-EMF exposure.Exposure to RF-EMF and/or noise was associated with body weight gain, with hyperphagia in the noise-only and RF-EMF + noise groups and hypophagia in the RF-EMF-only group. Sleep parameters recording over 24 h highlighted a higher frequency of active wakefulness in the RF-EMF-only group and a lower non-rapid eye movement/rapid eye movement sleep ratio during the active period in the noise-only group. There were no differences in sleep duration in either group. During the 1-h, constraint-free sleep recording, sleep rebound was observed in the noise-only group but not in the RF-EMF-only and RF-EMF + noise groups.Our study showed effects of RF-EMF, regardless of whether or not the animals were also exposed to noise. However, the RF-EMF + noise group presented no exacerbation of those effects. Our results did not support the hypothesis whereby the effects of RF-EMF on physiological functions studied are only visible in animals exposed to both noise and RF-EMF.
Afficher plus [+] Moins [-]Dichlorvos alters morphology and behavior in zebrafish (Danio rerio) larvae Texte intégral
2019
Altenhofen, Stefani | Nabinger, Débora Dreher | Bitencourt, Paula Eliete Rodrigues | Bonan, Carla Denise
Dichlorvos (2,2-dichlorovinyl-dimethylphosphate), an organophosphorus pesticide used for indoor insect and livestock parasite control, is among the most common commercially available pesticides. However, there are significant concerns over its toxicity, especially due to its relative stability in water, soil, and air. Zebrafish, an important developmental model, has been used for studying the effects of toxic compounds. The aim of this study was to evaluate the exposure to dichlorvos at early life stages (1 h postfertilization - 7 days postfertilization) in the zebrafish and its toxicological effects during the development, through morphological (7 days postfertilization), locomotor and social behavior analysis (7, 14, 30, 70, and 120 days postfertilization). Dichlorvos (1, 5, and 10 mg/L) exposure reduced the body length and heartbeat rate at 7 days postfertilization (dpf), as well as the surface area of the eyes (5 and 10 mg/L). The avoidance behavior test showed a significant decrease in escape responses at 7 (1, 5, and 10 mg/L) and 14 (5 and 10 mg/L) dpf zebrafish. The evaluation of larval exploratory behavior showed a reduction in distance traveled, mean speed (1, 5, and 10 mg/L) and time mobile (10 mg/L) between control and dichlorvos groups. In addition, the analysis performed on adult animals showed that the changes in distance traveled and mean speed remained reduced in 30 (1, 5, and 10 mg/L) and 70 dpf (5 and 10 mg/L), recovering values similar to the control at 120 dpf. The social behavior of zebrafish was not altered by exposure to dichlorvos in the early stages of development. Thus, the exposure to organophosphorus compounds at early stages of development induces an increased susceptibility to behavioral and neuronal changes that could be associated with several neurodegenerative diseases.
Afficher plus [+] Moins [-]Brood size is reduced by half in birds feeding on flutriafol-treated seeds below the recommended application rate Texte intégral
2018
Lopez-Antia, Ana | Ortiz-Santaliestra, Manuel E. | Mougeot, François | Camarero, Pablo R. | Mateo, Rafael
Despite the efforts of the European Commission to implement measures that offset the detrimental effects of agricultural intensification, farmland bird populations continue to decline. Pesticide use has been pointed out as a major cause of decline, with growing concern about those agro-chemicals that act as endocrine disruptors. We report here on the effects of flutriafol, a ubiquitous systemic fungicide used for cereal seed treatment, on the physiology and reproduction of a declining gamebird. Captive red-legged partridges (Alectoris rufa; n = 11–13 pairs per treatment) were fed wheat treated with 0%, 20% or 100% of the flutriafol application rate during 25 days in late winter. We studied treatment effects on the reproductive performance, carotenoid-based coloration and cellular immune responsiveness of adult partridges, and their relationship with changes in oxidative stress biomarkers and plasma biochemistry. We also studied the effect of parental exposure on egg antioxidant content and on the survival, growth and cellular immune response of offspring. Exposed partridges experienced physiological effects (reduced levels of cholesterol and triglycerides), phenotypical effects (a reduction in the carotenoid-based pigmentation of their eye rings), and most importantly, severe adverse effects on reproduction: a reduced clutch size and fertile egg ratio, and an overall offspring production reduced by more than 50%. No effects on body condition or cellular immune response of either exposed adult or their surviving offspring were observed. These results, together with previous data on field exposure in wild partridges, demonstrate that seed treatment with flutriafol represents a risk for granivorous birds; they also highlight a need to improve the current regulation system used for foreseeing and preventing negative impacts of Plant Protection Products on wildlife.
Afficher plus [+] Moins [-]Exposure to cocaine and its main metabolites altered the protein profile of zebrafish embryos Texte intégral
2018
Parolini, Marco | Bini, Luca | Magni, Stefano | Rizzo, Alessandro | Ghilardi, Anna | Landi, Claudia | Armini, Alessandro | Del Giacco, Luca | Binelli, Andrea
Illicit drugs have been identified as emerging aquatic pollutants because of their widespread presence in freshwaters and potential toxicity towards aquatic organisms. Among illicit drug residues, cocaine (COC) and its main metabolites, namely benzoylecgonine (BE) and ecgonine methyl ester (EME), are commonly detected in freshwaters worldwide at concentration that can induce diverse adverse effects to non-target organisms. However, the information of toxicity and mechanisms of action (MoA) of these drugs, mainly of COC metabolites, to aquatic species is still fragmentary and inadequate. Thus, this study was aimed at investigating the toxicity of two concentrations (0.3 and 1.0 μg/L) of COC, BE and EME similar to those found in aquatic ecosystems on zebrafish (Danio rerio) embryos at 96 h post fertilization through a functional proteomics approach. Exposure to COC and both its metabolites significantly altered the protein profile of zebrafish embryos, modulating the expression of diverse proteins belonging to different functional classes, including cytoskeleton, eye constituents, lipid transport, lipid and energy metabolism, and stress response. Expression of vitellogenins and crystallins was modulated by COC and both its main metabolites, while only BE and EME altered proteins related to lipid and energy metabolism, as well as to oxidative stress response. Our data confirmed the potential toxicity of low concentrations of COC, BE and EME, and helped to shed light on their MoA on an aquatic vertebrate during early developmental period.
Afficher plus [+] Moins [-]Triclosan affects axon formation in the neural development stages of zebrafish embryos (Danio rerio) Texte intégral
2018
Kim, Jin | Oh, Hanseul | Ryu, Bokyeong | Kim, Ukjin | Lee, Ji-min | Jung, Cho-Rok | Kim, C-yoon | Park, Jae-Hak
Triclosan (TCS) is an organic compound with a wide range of antibiotic activity and has been widely used in items ranging from hygiene products to cosmetics; however, recent studies suggest that it has several adverse effects. In particular, TCS can be passed to both fetus and infants, and while some evidence suggests in vitro neurotoxicity, there are currently few studies concerning the mechanisms of TCS-induced developmental neurotoxicity. Therefore, this study aimed to clarify the effect of TCS on neural development using zebrafish models, by analyzing the morphological changes, the alterations observed in fluorescence using HuC-GFP and Olig2-dsRED transgenic zebrafish models, and neurodevelopmental gene expression. TCS exposure decreased the body length, head size, and eye size in a concentration-dependent manner in zebrafish embryos. It increased apoptosis in the central nervous system (CNS) and particularly affected the structure of the CNS, resulting in decreased synaptic density and shortened axon length. In addition, it significantly up-regulated the expression of genes related to axon extension and synapse formation such as α1-Tubulin and Gap43, while decreasing Gfap and Mbp related to axon guidance, myelination and maintenance. Collectively, these changes indicate that exposure to TCS during neurodevelopment, especially during axonogenesis, is toxic. This is the first study to demonstrate the toxicity of TCS during neurogenesis, and suggests a possible mechanism underlying the neurotoxic effects of TCS in developing vertebrates.
Afficher plus [+] Moins [-]Environmental concentrations of prednisolone alter visually mediated responses during early life stages of zebrafish (Danio rerio) Texte intégral
2016
McNeil, Paul L. | Nebot, Carolina | Cepeda, Alberto | Sloman, Katherine A.
The development of the eye in vertebrates is dependent upon glucocorticoid signalling, however, specific components of the eye are sensitive to synthetic glucocorticoids. The presence of synthetic glucocorticoids within the aquatic environment may therefore have important consequences for fish, which are heavily reliant upon vision for mediating several key behaviours. The potential ethological impact of synthetic glucocorticoid oculotoxicity however has yet to be studied. Physiological and behavioural responses which are dependent upon vision were selected to investigate the possible toxicity of prednisolone, a commonly occurring synthetic glucocorticoid within the environment, during early life stages of zebrafish. Although exposure to prednisolone did not alter the morphology of the external eye, aggregation of melanin within the skin in response to increasing light levels was impeded and embryos exposed to prednisolone (10 μg/l) maintained a darkened phenotype. Exposure to prednisolone also increased the preference of embryos for a dark environment within a light dark box test in a concentration dependent manner. However the ability of embryos to detect motion appeared unaffected by prednisolone. Therefore, while significant effects were detected in several processes mediated by vision, changes occurred in a manner which suggest that vision was in itself unaffected by prednisolone. Neurological and endocrinological changes during early ontogeny are considered as likely candidates for future investigation.
Afficher plus [+] Moins [-]Association between outpatient visits for pterygium and air pollution in Hangzhou, China Texte intégral
2021
Fu, Qiuli | Mo, Zhe | Gu, Yuzhou | Lu, Bing | Hao, Shengjie | Lyu, Danni | Xu, Peiwei | Wu, Lizhi | Lou, Xiaoming | Jin, Hongying | Wang, Xiaofeng | Chen, Zhijian | Yao, Ke
Air pollution could be a risk factor for the development of pterygium. This study aimed to investigate the potential associations between outpatient visits for pterygium and air pollutants. Using a time-stratified case-crossover design, the data of 3017 outpatients with pterygium visiting an eye center in Hangzhou, China, and the air pollution data of the Environmental Protection Department of Zhejiang Province between July 1, 2014, and November 30, 2019, were examined. The relationships between the air pollutants nitrogen dioxide (NO₂), sulfur dioxide (SO₂), ozone, and fine particulate matter (PM) with median aerometric diameter <2.5 μm (PM₂.₅) and <10 μm (PM₁₀) and outpatient visits for primary pterygium were assessed using single- and multiple-pollutant models. Significant associations between outpatient visits for pterygium and air pollutants (PM₂.₅, PM₁₀, SO₂, and NO₂) were observed. Younger patients were found to be more sensitive to air pollution. Interestingly, the younger female patients with pterygium were more vulnerable to PM₂.₅ exposure during the warm season, while the younger male patients with pterygium were more sensitive to NO₂ during the cold season. Significant effects were also observed between the pterygium outpatients and PM₂.₅ (odds ratio [OR] = 1.06, P = 0.02), PM₁₀ (OR = 1.04, P = 0.01), and SO₂ (OR = 1.26, P = 0.01) during the warm season, as well as NO₂ (OR = 1.06, P = 0.01) during the cold season. Our study provides evidence that outpatient visits for pterygium are positively associated with increases in the air pollutants PM₂.₅, PM₁₀, SO₂, and NO₂, revealing the important role of air pollution in the occurrence and development of pterygium.
Afficher plus [+] Moins [-]Birds feeding on tebuconazole treated seeds have reduced breeding output Texte intégral
2021
Lopez-Antia, Ana | Ortiz-Santaliestra, Manuel E. | Mougeot, François | Camarero, Pablo R. | Mateo, Rafael
Drilled seeds are an important food resource for many farmland birds but may pose a serious risk when treated with pesticides. Most compounds currently used as seed treatment in the EU have low acute toxicity but may still affect birds in a sub-chronic or chronic way, especially considering that the sowing season lasts several weeks or months, resulting in a long exposure period for birds. Tebuconazole is a triazole fungicide widely used in agriculture but its toxicity to birds remains largely unknown. Our aim was to test if a realistic scenario of exposure to tebuconazole treated seeds affected the survival and subsequent reproduction of the red-legged partridge (Alectoris rufa). We fed captive partridges with wheat seeds treated with 0%, 20% or 100% of tebuconazole application rate during 25 days in late winter (i.e. tebuconazole dietary doses were approximately 0.2 and 1.1 mg/kg bw/day). We studied treatment effects on the physiology (i.e. body weight, biochemistry, immunology, oxidative stress, coloration) and reproduction of partridges. Exposed birds did not reduce food consumption but presented reduced plasmatic concentrations of lipids (triglycerides at both exposure doses, cholesterol at high dose) and proteins (high dose). The coloration of the eye ring was also reduced in the low dose group. Exposure ended 60 days before the first egg was laid, but still affected reproductive output: hatching rate was reduced by 23% and brood size was 1.5 times smaller in the high dose group compared with controls. No significant reproductive effects were found in the low dose group. Our results point to the need to study the potential endocrine disruption mechanism of this fungicide with lagged effects on reproduction. Risk assessments for tebuconazole use as seed treatment should be revised in light of these reported effects on bird reproduction.
Afficher plus [+] Moins [-]Urban noise restricts, fragments, and lightens sleep in Australian magpies Texte intégral
2020
Connelly, Farley | Johnsson, Robin D. | Aulsebrook, Anne E. | Mulder, Raoul A. | Hall, Michelle L. | Vyssotski, Alexei L. | Lesku, John A.
Urban areas are inherently noisy, and this noise can disrupt biological processes as diverse as communication, migration, and reproduction. We investigated how exposure to urban noise affects sleep, a process critical to optimal biological functioning, in Australian magpies (Cracticus tibicen). Eight magpies experimentally exposed to noise in captivity for 24-h spent more time awake, and less time in non-rapid eye movement (non-REM) and REM sleep at night than under quiet conditions. Sleep was also fragmented, with more frequent interruptions by wakefulness, shorter sleep episode durations, and less intense non-REM sleep. REM sleep was particularly sensitive to urban noise. Following exposure to noise, magpies recovered lost sleep by engaging in more, and more intense, non-REM sleep. In contrast, REM sleep showed no rebound. This might indicate a long-term cost to REM sleep loss mediated by noise, or contest hypotheses regarding the functional value of this state. Overall, urban noise has extensive, disruptive impacts on sleep composition, architecture, and intensity in magpies. Future work should consider whether noise-induced sleep restriction and fragmentation have long-term consequences.
Afficher plus [+] Moins [-]Effects of antidepressants with different modes of action on early life stages of fish and amphibians Texte intégral
2019
Sehonova, Pavla | Hodkovicova, Nikola | Urbanova, Monika | Örn, Stefan | Blahova, Jana | Svobodová, Zdeňka | Faldyna, Martin | Chloupek, Petr | Briedikova, Kristina | Carlsson, Gunnar
Drugs are excreted from the human body as both original substances and as metabolites and enter aquatic environment through waste water. The aim of this study was to widen the current knowledge considering the effects of waterborne antidepressants with different modes of action—amitriptyline, venlafaxine, sertraline—on embryos of non-target aquatic biota—fish (represented by Danio rerio) and amphibians (represented by Xenopus tropicalis). The tested concentrations were 0.3; 3; 30; 300 and 3000 μg/L in case of amitriptyline and venlafaxine and 0.1; 1; 10; 100 and 1000 μg/L for sertraline. Test on zebrafish embryos was carried out until 144 h post fertilization, while test on Xenopus embryos was terminated after 48 h. Lethal and sublethal effects as well as swimming alterations were observed at higher tested concentrations that are not present in the environment. In contrast, mRNA expression of genes related to heart, eye, brain and bone development (nkx2.5, otx 2, bmp4 and pax 6) seems to be impacted also at environmentally relevant concentrations. In a wider context, this study reveals several indications on the ability of antidepressants to affect non target animals occupying environments which may be contaminated by such compounds.
Afficher plus [+] Moins [-]