Affiner votre recherche
Résultats 1-10 de 263
Demonstration of a plant-microbe integrated system for treatment of real-time textile industry wastewater
2022
Jayapal, Mohanapriya | Jagadeesan, Hema | Krishnasamy, Vinothkumar | Shanmugam, Gomathi | Muniyappan, Vignesh | Chidambaram, Dinesh | Krishnamurthy, Satheesh
The real-time textile dyes wastewater contains hazardous and recalcitrant chemicals that are difficult to degrade by conventional methods. Such pollutants, when released without proper treatment into the environment, impact water quality and usage. Hence, the textile dye effluent is considered a severe environmental pollutant. It contains mixed contaminants like dyes, sodium bicarbonate, acetic acid. The physico-chemical treatment of these wastewaters produces a large amount of sludge and costly. Acceptance of technology by the industry mandates that it should be efficient, cost-effective and the treated water is safe for reuse. A sequential anaerobic-aerobic plant-microbe system with acclimatized microorganisms and vetiver plants, was evaluated at a pilot-scale on-site. At the end of the sequential process, decolorization and total aromatic amine (TAA) removal were 78.8% and 69.2% respectively. Analysis of the treated water at various stages using Fourier Transform Infrared (FTIR), High Performance Liquid Chromatography (HPLC)) Gas Chromatography-Mass Spectrometry (GC-MS) Liquid Chromatography-Mass Spectrometry (LC-MS) indicated that the dyes were decolourized and the aromatic amine intermediates formed were degraded to give aliphatic compounds. Scanning Electron Microscope (SEM) and Atomic Force Microscopy (AFM) analysis showed interaction of microbe with the roots of vetiver plants. Toxicity analysis with zebrafish indicated the removal of toxins and teratogens.
Afficher plus [+] Moins [-]Fate, source and mass budget of sedimentary microplastics in the Bohai Sea and the Yellow Sea
2022
Zhang, Mingyu | Lin, Yan | Booth, Andy M. | Song, Xikun | Cui, Yaozong | Xia, Bin | Gu, Zhangjie | Li, Yifan | Liu, Fengjiao | Cai, Minggang
As reservoirs for pollutants transported via the Yangtze and Yellow Rivers, the Bohai Sea (BS) and Yellow Sea (YS) play an important role in transporting microplastics (MPs) to the Pacific Ocean. The fate, sources and mass budget of MPs in the BS and the YS were investigated by Pearson correlation, principal component analysis-multilinear regression analysis (PCA-MRLA) and a mass balance model to sedimentary MPs data. Average MP abundances were 137 and 119 items kg⁻¹ in the Bohai and Yellow Seas, respectively. MPs <1000 μm exhibited similar distribution patterns to total organic carbon and fine-grained sediments, while MPs >1000 μm were confined in the BS and exhibited a strong positive correlation with chlorophyll-a and polyethylene terephthalate, suggesting that larger MPs might deposit faster due to biofouling or when comprised of high density polymers. PCA-MLRA analysis indicated land-based inputs (packing materials, textile material and daily commodities) were dominant in the BS, while maritime activities (fishing and mariculture) were the main source of MPs in the YS. The mass balance model revealed that the total MP input and output to the BS and the YS was 3396.92 t yr⁻¹ and 3814.81 t yr⁻¹, respectively. The major input pathway of MPs to the BS and the YS were river discharge and air deposition, respectively. Notably, 94% of MPs in the BS and the YS were deposited to sediments. This study revealed that BS and YS sediments play an important role in preventing MPs from being further transported to the Pacific Ocean, thus more attention should be paid to local ecological risk assessment.
Afficher plus [+] Moins [-]Integrated approach of photo-assisted electrochemical oxidation and sequential biodegradation of textile effluent
2022
Prakash, Arumugam Arul | Sathishkumar, Kuppusamy | AlSalhi, Mohamad S. | Devanesan, Sandhanasamy | Mani, Panagal | Kamala-Kannan, Seralathan | Vijayanand, Selvaraj | Rajasekar, Aruliah
Synthetic azo dyes are extensively used in the textile industries, which are being released as textile effluent into the environment presence of azo dyes in the environment is great environmental concern therefore treatment of textile effluent is crucial for proper release of the effluent into the environment. Electrochemical oxidation (EO) is extensively used in the degradation of pollutants because of its high efficiency. In this study, photo-assisted electrooxidation (PEO) followed by biodegradation of the textile effluent was evaluated. The pretreatment of textile effluent was conducted by EO and PEO in a tubular flow cell with TiO₂–Ti/IrO₂–RuO₂ anode and titanium cathode under different current densities (10, 15, and 20 mA cm⁻²). The chemical oxygen demand level reduced from 3150 mg L⁻¹ to 1300 and 600 mg L⁻¹under EO and PEO, respectively. Furthermore, biodegradation of EO and PEO pretreated textile effluent shows reduction in chemical oxygen demand (COD) from 1300 mg L⁻¹ to 900 mg L⁻¹and 600 mg L⁻¹to 110 mg L⁻¹, respectively. The most abundant genera were identified as Acetobacter, Achromobacter, Acidaminococcus, Actinomyces, and Acetomicrobium from the textile effluent. This study suggests that an integrated approach of PEO and subsequent biodegradation might be an effective and eco-friendly method for the degradation of textile effluent.
Afficher plus [+] Moins [-]Side-chain fluorotelomer-based polymers in children car seats
2021
Wu, Yan | Miller, Gillian Z. | Gearhart, Jeff | Peaslee, Graham | Venier, Marta
Fabric and foam samples from popular children car seats marketed in the United States during 2018 were tested for fluorine content by particle-included gamma ray emission spectroscopy (PIGE, n = 93) and X-ray photoelectron spectroscopy (XPS, n = 36), as well as for per- and polyfluoroalkyl substances (PFAS) by liquid and gas chromatography mass spectrometry (LC/MS and GC/MS, n = 36). PFAS were detected in 97% of the car seat samples analyzed with MS, with total concentrations of 43 PFAS (∑PFAS) up to 268 ng/g. Fabric samples generally had greater ∑PFAS levels than foam and laminated composites of foam and fabric. The three fabric samples with the highest total fluorine content as represented by the highest PIGE signal were also subjected to ultraviolet (UV) irradiation and the total oxidizable precursor (TOP) assay. Results from these treatments, as well as the much higher organofluorine levels measured by PIGE compared to LC/MS and GC/MS, suggested the presence of side-chain fluorotelomer-based polymers (FTPs), which have the potential to readily degrade into perfluoroalkyl acids (PFAAs) under UV light. Furthermore, fluorotelomer (meth)acrylates were found to be indicators for the presence of (meth)acrylate-linked FTPs in consumer products, and thus confirmed that at least half of the tested car seats had FTP-treated fabrics. Finally, extraction of selected samples with synthetic sweat showed that ionic PFAS, particularly those with fluorinated carbons ≤8, can migrate from fabric to sweat, suggesting a potential dermal route of exposure.
Afficher plus [+] Moins [-]Organophosphate esters and their specific metabolites in chicken eggs from across Australia: Occurrence, profile, and distribution between yolk and albumin fractions
2020
Li, Zongrui | He, Chang | Thái Phong, | Wang, Xianyu | Bräunig, Jennifer | Yu, Yunjiang | Luo, Xiaojun | Mai, Bixian | Mueller, Jochen F.
A substantial increase in the usage of organophosphate esters (OPEs) as flame retardants and plasticizers in rubbers, textiles, upholstered furniture, lacquers, plastics, building materials and electronic equipment has resulted in their increasing concentrations in the environment over time. However, little is known about the concentrations and fate of OPEs and their metabolites (mOPEs) in biota, including chicken eggs. The aim of this study was to understand the spatial variation in the concentrations in chicken eggs and the partitioning between yolk and albumin. In total, 153 chicken eggs were purchased across Australia and analysed for 9 OPEs and 11 mOPE. Most of the compounds were found to be deposited in egg yolk, where diphenyl phosphate (DPHP, 3.8 ng/g wet weight, median) and tris(2-chloroisopropyl) phosphate (TCIPP, 1.8 ng/g wet weight, median) were predominant mOPE and OPE, respectively. Moreover, no spatial differences in concentrations of OPEs and mOPEs in eggs purchased from different locations were found in this study. Although comparable levels of ∑OPEs were detected in egg yolk and albumin, much higher concentrations of ∑mOPEs were found in yolk than albumin. Meanwhile, a negative correlation (R² = 0.964, p = 0.018) was found between the molecular mass of analytes and partitioning coefficient of Cyₒₗₖ/Cyₒₗₖ₊ₐₗbᵤₘᵢₙ (defined as chemical concentration in egg yolk divided by the sum of chemical concentrations in both yolk and albumin). These results indicate that n-octanol/water partition coefficients (log KOW) may not be a crucial factor in the distribution of OPEs and mOPEs between egg yolk and albumin, which is important in understanding distribution of emerging organic contaminants in biota.
Afficher plus [+] Moins [-]Effect of microplastics PAN polymer and/or Cu2+ pollution on the growth of Chlorella pyrenoidosa
2020
Lin, Wei | Su, Fang | Lin, Maozi | Jin, Meifang | Li, Yuanheng | Ding, Kewu | Chen, Qinhua | Qian, Qingrong | Sun, Xiaoli
Polyacrylonitrile polymer (PAN), a common representative textile material and a microplastic, has significant influence on phytoplankton algae, especially with co-exposure with other pollutants, e.g. Cu²⁺. In the present study, we carried out experiments to reveal the population size variation trends of Chlorella pyrenoidosa over time (during a whole growth cycle of 6 days) under PAN and/or Cu²⁺. The levels of pigments (chlorophyll a, b, total chlorophyll and carotenoids), chlorophyll a fluorescence parameters, and other physiological and biochemical indices, containing total protein measurements of H₂O₂, catalase (CAT), and malondialdehyde (MDA) under different treatment groups were measured to explain the physio-ecological mechanism of the effect of PAN and/or Cu²⁺ on the growth of C. pyrenoidosa. The results showed that PAN, Cu²⁺ and the combination of PAN and Cu²⁺ inhibited the growth of C. pyrenoidosa. Chlorophyll a and b decreased significantly with increasing levels of pollutants (PAN and/or Cu²⁺); however, the carotenoid levels increased with increasing levels of pollutants (PAN and/or Cu²⁺) for the first three cultivation days. The oxygen-evolving complexes (OECs) of C. pyrenoidosa had been damaged under Cu²⁺ pollution. The results also showed that CAT activity, MDA content and H₂O₂ activity of C. pyrenoidosa increased with increasing levels of pollutants (PAN and/or Cu²⁺); however, total protein content decreased with increasing levels of pollutants (PAN and/or Cu²⁺) at the first cultivation day. These results indicate that pollutants (PAN and/or Cu²⁺) are harmful to the growth of the C. pyrenoidosa population and negatively affect the levels and function of the pigments in C. pyrenoidosa by decreasing chlorophyll a and b levels, increasing carotenoid levels, and increasing antioxidant enzyme activity.
Afficher plus [+] Moins [-]Effect of different air pollution control devices on the gas/solid-phase distribution of PCDD/F in a full-scale municipal solid waste incinerator
2020
Lin, Xiaoqing | Ma, Yunfeng | Chen, Zhiliang | Li, Xiaodong | Lu, Shengyong | Yan, Jianhua
The emission of polychlorinated dibenzo-p-dioxins and -furans (PCDD/F) from full-scale municipal solid waste incinerators (MSWI) is harmful to human and environmental health. This study analyzes the effect of different units of an air pollution control devices (APCDs), i.e. the semi-dry scrubber, fabric filter (FF), selective catalytic reduction (SCR), and wet scrubber (WS), on the removal characteristics and gas- and solid-phase distributions of PCDD/F in MSWI flue gas. APCDs reduce PCDD/F concentrations from 24.9 ng Nm⁻³ to 0.979 ng Nm⁻³ (2.16 ng I-TEQ Nm⁻³ to 0.0607 ng I-TEQ Nm⁻³), with a total removal efficiency (RE) of 96.1% (97.2% I-TEQ). Specifically, APCDs remove more than 95% of both gas- and solid-phase PCDD/F. The FF coupled with active carbon injection (FF + ACI) substantially reduces both gas- and solid-phase PCDD/F concentrations with an RE of 97.2% (98.7% I-TEQ). Additionally, FF + ACI exhibits a better RE of PCDF (98.9%) than PCDD (94.6%) and leads to PCDD congeners dominating the gas-phase. Both desorption and destruction of PCDD/F occur in the SCR, which favors removal of gas-phase PCDD/F but increases solid-phase PCDD/F. Therefore, SCR only decreases PCDD/F with a low RE of 27.6% (16.9% I-TEQ). However, SCR reduces NOₓ with a high RE of 82.3%, which could inhibit the RE of PCDD/F because of their different reaction mechanisms. WS increases PCDD/F in both the gas and solid-phase by 1.95 times (2.57 times for I-TEQ) due to the memory effect, which typically increases the total mass concentration of PCDD/F and the proportions of lower-chlorinated gas-phase PCDD/F. Migration of gas- and solid-phase PCDD/F are also analyzed according to temperature. The results of this study can contribute to the optimized design of industrial APCDs for controlling PCDD/F emissions from MSWI.
Afficher plus [+] Moins [-]UV filters induce transcriptional changes of different hormonal receptors in Chironomus riparius embryos and larvae
2016
Ozáez, Irene | Aquilino, Mónica | Morcillo, Gloria | Martínez-Guitarte, José-Luis
Organic ultraviolet (UV) filters are emerging contaminants that are ubiquitous in fresh and marine aquatic systems due to their extensive use in cosmetics, plastics, paints, textiles, and many other industrial products. The estrogenic effects of organic UV filters have been long demonstrated in vertebrates, and other hormonal activities may be altered, according to more recent reports. The impact of UV filters on the endocrine system of invertebrates is largely unknown. We have previously reported that some UV filters may affect ecdysone-related genes in the aquatic insect Chironomus riparius, an ecotoxicologically important model organism. To further analyze other possible effects on endocrine pathways, we first characterized four pivotal genes related with hormonal pathways in insects; thereafter, these genes were assessed for alterations in transcriptional activity after exposure to 4-methylbenzylidene camphor (4MBC) or benzophenone-3 (BP-3), two extensively used sunscreens. We found that both chemicals disturbed the expression of all four genes analyzed: hormonal receptor 38 (HR38), methoprene-tolerant (Met), membrane-associate progesterone receptor (MAPR) and insulin-like receptor (INSR), measured by changes in mRNA levels by real-time PCR. An upregulatory effect at the genomic level was detected in different developmental stages. Interestingly, embryos appeared to be more sensitive to the action of the UV filters than larvae. Our results suggest that the risk of disruption through different endocrine routes is not negligible, considering the significant effects of UV filters on key hormonal receptor and regulatory genes. Further effort is needed to develop environmental risk assessment studies on these pollutants, particularly for aquatic invertebrate model organisms.
Afficher plus [+] Moins [-]Microplastic pollution in Bangladesh: Research and management needs
2022
Islam, Tariqul | Li, Yanliang | Rob, Md Mahfuzur | Cheng, Hefa
Microplastics are omnipresent in the terrestrial and aquatic environment, and are considered as a potentially serious threat to the biodiversity and ecosystem. Pollution of plastic debris and microplastics in the inland and marine environment has raised concerns in Bangladesh, which is one of the most densely populated countries in the world. This review summarizes the research progress on separation and characterization of microplastics, as well as their occurrence and sources in Bangladesh. Despite of the first total ban on plastic bags in the world introduced back in 2002, microplastics have been ubiquitously detected in the country's inland and marine environment, with the majority of them coming from secondary sources. The microplastics observed in Bangladesh were dominated by fibers, which were derived mainly from textile sources. Polyethylene (PE), polyethylene terephthalate (PET), polypropylene (PP), and polyvinylchloride (PVC) were the most abundant polymers found for microplastics in the marine and freshwater environment of Bangladesh. Along with the identified research priorities to improve the understanding on the ecotoxicological effect and fate of microplastics, extensive and in-depth studies are required to bridge the knowledge gaps to enable comprehensive risk assessment of microplastic pollution on local ecosystems and human health, while effective management of plastic wastes and their recycling are necessary to alleviate this problem in the country.
Afficher plus [+] Moins [-]Health risk assessment of polychlorinated biphenyls (PCBs) in baby clothes. A preliminary study
2022
Herrero, Marta | González, Neus | Rovira, Joaquim | Marquès, Montse | Domingo, José L. | Abalos, Manuela | Abad, Esteban | Nadal, Martí
Clothes may contain a large range of chemical additives and other toxic substances, which may eventually pose a significant risk to human health. Since they are associated with pigments, polychlorinated biphenyls (PCBs) may be especially relevant. On the other hand, infants are very sensitive to chemical exposure and they may wear some contact and colored textiles for a prolonged time. Consequently, a specific human health risk assessment is required. This preliminary study was aimed at analyzing the concentrations of PCBs in ten bodysuits purchased in on-line stores and local retailers. The concentrations of 12 dioxin-like and 8 non-dioxin-like PCB congeners were determined by gas chromatography coupled to high resolution mass spectrometry, with detection limits ranging between 0.01 and 0.13 pg/g. The dermal absorption to PCBs of children at different ages (6 months, 1 year and 3 years old) was estimated, and the non-cancer and cancer risks were evaluated. Total levels of PCBs ranged from 74.2 to 412 pg/g, with a mean TEQ concentration of 13.4 pg WHO-TEQ/kg. Bodysuits made of organic cotton presented a total mean PCB concentration substantially lower than clothes made of regular cotton (11.0 vs. 15.8 pg WHO-TEQ/kg). The dermal absorption to PCBs for infants was calculated in around 3·10⁻⁵ pg WHO-TEQ/kg·day, regardless the age. This value is > 10,000-fold lower than the dietary intake of PCBs, either through breastfeeding or food consumption. Furthermore, this exposure value would not pose any health risks for the infants wearing those bodysuits. Anyhow, as it is a very preliminary study, this should be confirmed by analyzing larger sets of textile samples. Further investigations should be also focused on the co-occurrence of PCBs and other toxic chemicals (i.e., formaldehyde, bisphenols and aromatic amines) in infant clothes.
Afficher plus [+] Moins [-]