Affiner votre recherche
Résultats 1-10 de 129
Latitudinal difference in the molecular distributions of lipid compounds in the forest atmosphere in China
2022
Zhang, Donghuan | Ren, Hong | Hu, Wei | Wu, Libin | Ren, Lujie | Deng, Junjun | Zhang, Qiang | Sun, Yele | Wang, Zifa | Kawamura, Kimitaka | Fu, Pingqing
Lipids are important biogenic markers to indicate the sources and chemical process of aerosol particles in the atmosphere. To better understand the influences of biogenic and anthropogenic sources on forest aerosols, total suspended particles (TSP) were collected at Mt. Changbai, Shennongjia, and Xishuangbanna that are located at different climatic zones in northeastern, central and southwestern China. n-Alkanes, fatty acids and n-alcohols were detected in the forest aerosols based on gas chromatography-mass spectrometry. The total concentrations of aliphatic compounds ranged from 15.3 ng m⁻³ to 566 ng m⁻³, and fatty acids were the most abundant (44–95%) followed by n-alkanes and n-alcohols. Low molecular weight- (LFAs) and unsaturated fatty acids (UnFAs) showed diurnal variation with higher concentrations during the nighttime in summer, indicating the potential impact from microbial activities on forest aerosols. The differences of oleic acid (C₁₈:₁) and linoleic acid (C₁₈:₂) concentrations between daytime and nighttime increased at lower latitude, indicating more intense photochemical degradation occurred at lower latitude regions. High levels of n-alkanes during daytime in summer with higher values of carbon preference indexes, combining the strong odd carbon number predominance with a maximum at C₂₇ or C₂₉, implied the high contributions of biogenic sources, e.g., higher plant waxes. In contrast, higher concentrations of low molecular weight n-alkanes were detected in winter forest aerosols. Levoglucosan showed a positive correlation (R² > 0.57) with high- and low molecular weight aliphatic compounds in Mt. Changbai, but such a correlation was not observed in Shennongjia and Xishuangbanna. These results suggest the significant influence of biomass burning in Mt. Changbai, and fossil fuel combustion might be another important anthropogenic source of forest aerosols. This study adds useful information to the current understanding of forest organic aerosols at different geographical locations in China.
Afficher plus [+] Moins [-]Seasonal pollutant levels in littoral high-Arctic amphipods in relation to food sources and terrestrial run-off
2022
Skogsberg, Emelie | McGovern, Maeve | Poste, Amanda | Jonsson, Sofi | Arts, Michael T. | Varpe, Øystein | Borgå, Katrine
Increasing terrestrial run-off from melting glaciers and thawing permafrost to Arctic coastal areas is expected to facilitate re-mobilization of stored legacy persistent organic pollutants (POPs) and mercury (Hg), potentially increasing exposure to these contaminants for coastal benthic organisms. We quantified chlorinated POPs and Hg concentrations, lipid content and multiple dietary markers, in a littoral deposit-feeding amphipod Gammarus setosus and sediments during the melting period from April to August in Adventelva river estuary in Svalbard, a Norwegian Arctic Aarchipelago. There was an overall decrease in concentrations of ∑POPs from April to August (from 58 ± 23 to 13 ± 4 ng/g lipid weight; lw), Hg (from 5.6 ± 0.7 to 4.1 ± 0.5 ng/g dry weight; dw) and Methyl Hg (MeHg) (from 5 ± 1 to 0.8 ± 0.7 ng/g dw) in G. setosus. However, we observed a seasonal peak in penta- and hexachlorobenzene (PeCB and HCB) in May (2.44 ± 0.3 and 23.6 ± 1.7 ng/g lw). Sediment concentrations of POPs and Hg (dw) only partly correlated with the contaminant concentrations in G. setosus. Dietary markers, including fatty acids and carbon and nitrogen stable isotopes, indicated a diet of settled phytoplankton in May–July and a broader range of carbon sources after the spring bloom. Phytoplankton utilization and chlorobenzene concentrations in G. setosus exhibited similar seasonal patterns, suggesting a dietary uptake of chlorobenzenes that is delivered to the aquatic environment during spring snowmelt. The seasonal decrease in contaminant concentrations in G. setosus could be related to seasonal changes in dietary contaminant exposure and amphipod ecology. Furthermore, this decrease implies that terrestrial run-off is not a significant source of re-mobilized Hg and legacy POPs to littoral amphipods in the Adventelva river estuary during the melt season.
Afficher plus [+] Moins [-]Biochemical toxicity and transcriptome aberration induced by dinotefuran in Bombyx mori
2022
Xu, Shiliang | Hao, Zhihua | Li, Yinghui | Zhou, Yanyan | Shao, Ruixi | Chen, Rui | Zheng, Meidan | Xu, Yusong | Wang, Huabing
Dinotefuran is a third-generation neonicotinoid pesticide and is increasingly used in agricultural production, which has adverse effects on nontarget organisms. However, the research on the impact of dinotefuran on nontarget organisms is still limited. Here the toxic effects of dinotefuran on an important economic species and a model lepidopteran insect, Bombyx mori, were investigated. Exposure to different doses of dinotefuran caused physiological disorders or death. Cytochrome P450, glutathione S-transferase, carboxylesterase, and UDP glycosyl-transferase activities were induced in the fat body at early stages after dinotefuran exposure. By contrast, only glutathione S-transferase activity was increased in the midgut. To overcome the lack of sensitivity of the biological assays at the individual organism level, RNA sequencing was performed to measure differential expressions of mRNA from silkworm larvae after dinotefuran exposure. Differential gene expression profiling revealed that various detoxification enzyme genes were significantly increased after dinotefuran exposure, which was consistent with the upregulation of the detoxifying enzyme. The global transcriptional pattern showed that the physiological responses induced by dinotefuran toxicity involved multiple cellular processes, including energy metabolism, oxidative stress, detoxification, and other fundamental physiological processes. Many metabolism processes, such as carbon metabolism, fatty acid biosynthesis, pyruvate metabolism, and the citrate cycle, were partially repressed in the midgut or fat body. Furthermore, dinotefuran significantly activated the MAPK/CREB, CncC/Keap1, PI3K/Akt, and Toll/IMD pathways. The links between physiological, biochemical toxicity and comparative transcriptomic analysis facilitated the systematic understanding of the integrated biological toxicity of dinotefuran. This study provides a holistic view of the toxicity and detoxification metabolism of dinotefuran in silkworm and other organisms.
Afficher plus [+] Moins [-]Hexafluoropropylene oxide dimer acid (HFPO-DA) induced developmental cardiotoxicity and hepatotoxicity in hatchling chickens: Roles of peroxisome proliferator activated receptor alpha
2021
Xu, Xiaohui | Ni, Hao | Guo, Yajie | Lin, Yongfeng | Ji, Jing | Jin, Congying | Yuan, Fuchong | Feng, Mengxiao | Ji, Na | Zheng, Yuxin | Jiang, Qixiao
Hexafluoropropylene oxide dimer acid (HFPO-DA) is a perfluorooctanoic acid (PFOA) substitute. In the current study, potential developmental cardiotoxicity and hepatotoxicity following HFPO-DA exposure in chicken embryo has been investigated, focusing on the roles of peroxisome proliferator activated receptor alpha (PPARα), the major molecular target in PFOA-induced toxicities. HFPO-DA was exposed to fertile chicken eggs via air cell injection, morphology and function of the target organs (heart and liver) in hatchlings were investigated with histopathology and electrocardiography, and the serum levels of HFPO-DA had been measured with quadrupole-time of flight liquid chromatograph-mass spectrometer (Q-TOF LC/MS). Additionally, lentivirus-mediated in ovo PPARα silencing was used to assess the roles of PPARα in HFPO-DA induced developmental toxicities. The results indicated that developmental exposure to HFPO-DA induced developmental cardiotoxicity, including thinned right ventricular wall and elevated heart rates, similar to those observed with PFOA exposure, as well as developmental hepatotoxicity in the form of steatosis. Silencing of PPARα alleviated such effects, suggesting participation of PPARα in HFPO-DA induced developmental toxicities in chicken embryo. Moreover, enhanced expression of PPARα downstream genes, cluster of differentiation 36 (CD36) and enoyl-CoA hydratase and 3-hydroxyacyl CoA dehydrogenase (EHHADH), were observed in HFPO-DA exposed animal heart tissues, which can be abolished by PPARα silencing. On the other hand, liver-type fatty acid binding protein (L-FABP) and CD36 expression were effectively enhanced in exposed liver tissues, but not EHHADH, suggesting differential mechanism of toxicity in heart and liver tissues. In summary, developmental exposure to HFPO-DA induced developmental cardiotoxicity and hepatotoxicity in hatchling chickens similar to PFOA, and PPARα still participates in such toxicities, with some differential downstream gene regulations in different organs. Further investigation on HFPO-DA-induced developmental toxicities is guaranteed.
Afficher plus [+] Moins [-]Characterization of plastic micro particles in the Atlantic Ocean seashore of Cape Town, South Africa and mass spectrometry analysis of pyrolyzate products
2020
Vilakati, Bongekile | Sivasankar, V. | Mamba, Bhekie B. | Omine, Kiyoshi | Msagati, Titus A.M.
The microplastic particles with 29 pyrolyzate compounds of marine water samples from the seashore locations in Cape Town, South Africa were analysed using Pyrolysis- GC-TOF-MS. The mass spectra data documented the presence of various chemical groups that include alkanes, alkenes, dienes, fatty acids and esters, biphenyl and benzene (along with derivatives). Out of 16 identified polymers in the study area, polythene (PE) was the dominant in six out of seven locations with 87.5% followed by polyethylene terephthalate (PET) and polyvinylchloride (PVC) in five (71.4%) and four (57.1%) out of seven locations respectively. The other constituent polymers of microplastics identified through pyrolyzates were polystyrene (PS), polyamide 12 (PA-12) polyacrylic acid (PAA) and ethyl vinyl acetate (EVA) copolymer. The microplastic samples contained six additives predominantly in the family of fatty acid esters and nine plasticizers from alcohols, carboxylic esters and acids. The base peaks of m/z 41, 43, 55, 57, 69, 73, 91, 102, 105, 127 and 154 were characterized respectively with the fragmented species of C₃H₅⁺, C₃H₇⁺, C₄H₇⁺, C₄H₉⁺, C₅H₉⁺, C₃H₅O₂⁺, C₇H₇⁺, C₃H₁₀O₂⁺(McLafferty ion), C₈H₉⁺, C₈H₁₅O⁺ and C₁₂H₁₀⁺. Accordingly to Globally Harmonized System (GHS) of hazard classification, about 27.4% of pyrolyzates are Irritants, 31.4% of pyrolyzates found to be Irritants along with other hazards such as Flammable, Compressed Gas, Environmental Hazard, Corrosive, Health Hazard, Acute Toxicity and Allergy. About 41.2% of the pyrolyzates are not classified under the Irritant category. Characterizations of the plastic microparticles from the seven seashore locations such as FTIR, SEM with EDX and TGA were also done and discussed to understand the functional groups, surface morphology with elemental composition and stability respectively of the polymeric microparticles.
Afficher plus [+] Moins [-]Nitrate exposure induces intestinal microbiota dysbiosis and metabolism disorder in Bufo gargarizans tadpoles
2020
Xie, Lei | Zhang, Yuhui | Gao, Jinshu | Li, Xinyi | Wang, Hongyuan
Excess nitrate has been reported to be associated with many adverse effects in humans and experimental animals. However, there is a paucity of information of the effects of nitrate on intestinal microbial community. In this study, the effects of nitrate on development, intestinal microbial community, and metabolites of Bufo gargarizans tadpoles were investigated. B. gargarizans were exposed to control, 5, 20 and 100 mg/L nitrate-nitrogen (NO₃–N) from eggs to Gosner stage 38. Our data showed that the body size of tadpoles significantly decreased in the 20 and 100 mg/L NO₃–N treatment group when compared to control tadpoles. Exposure to 20 and 100 mg/L NO₃–N also caused indistinct cell boundaries and nuclear pyknosis of mucosal epithelial cells in intestine of tadpoles. In addition, exposure to NO₃–N significantly altered the intestinal microbiota diversity and structure. The facultative anaerobic Proteobacteria occupy the niche of the obligately anaerobic Bacteroidetes and Fusobacteria under the pressure of NO₃–N exposure. According to the results of functional prediction, NO₃–N exposure affected the fatty acid metabolism pathway and amino acid metabolism pathway. The whole-body fatty acid components were found to be changed after exposure to 100 mg/L NO₃–N. Therefore, we concluded that exposure to 20 and 100 mg/L NO₃–N could induce deficient nutrient absorption in intestine, resulting in malnutrition of B. gargarizans tadpoles. High levels of NO₃–N could also change the intestinal microbial communities, causing dysregulation of fatty acid metabolism and amino acid metabolism in B. gargarizans tadpoles.
Afficher plus [+] Moins [-]Metagenome enrichment approach used for selection of oil-degrading bacteria consortia for drill cutting residue bioremediation
2018
Guerra, Alaine B. | Oliveira, Jorge S. | Silva-Portela, Rita C.B. | Araújo, Wydemberg | Carlos, Aline C. | Vasconcelos, Ana Tereza R. | Freitas, Ana Teresa | Domingos, Yldeney Silva | de Farias, Mirna Ferreira | Fernandes, Glauber José Turolla | Agnez-Lima, Lucymara F.
Drill cuttings leave behind thousands of tons of residues without adequate treatment, generating a large environmental liability. Therefore knowledge about the microbial community of drilling residue may be useful for developing bioremediation strategies. In this work, samples of drilling residue were enriched in different culture media in the presence of petroleum, aiming to select potentially oil-degrading bacteria and biosurfactant producers. Total DNA was extracted directly from the drill cutting samples and from two enriched consortia and sequenced using the Ion Torrent platform. Taxonomic analysis revealed the predominance of Proteobacteria in the metagenome from the drill cuttings, while Firmicutes was enriched in consortia samples. Functional analysis using the Biosurfactants and Biodegradation Database (BioSurfDB) revealed a similar pattern among the three samples regarding hydrocarbon degradation and biosurfactants production pathways. However, some statistical differences were observed between samples. Namely, the pathways related to the degradation of fatty acids, chloroalkanes, and chloroalkanes were enriched in consortia samples. The degradation colorimetric assay using dichlorophenolindophenol as an indicator was positive for several hydrocarbon substrates. The consortia were also able to produce biosurfactants, with biosynthesis of iturin, lichnysin, and surfactin among the more abundant pathways. A microcosms assay followed by gas chromatography analysis showed the efficacy of the consortia in degrading alkanes, as we observed a reduction of around 66% and 30% for each consortium in total alkanes. These data suggest the potential use of these consortia in the bioremediation of drilling residue based on autochthonous bioaugmentation.
Afficher plus [+] Moins [-]Semi volatile organic compounds in the snow of Russian Arctic islands: Archipelago Novaya Zemlya
2018
Lebedev, A.T. | Mazur, D.M. | Polyakova, O.V. | Kosyakov, D.S. | Kozhevnikov, A Yu | Latkin, T.B. | Andreeva Yu, I. | Artaev, V.B.
Environmental contamination of the Arctic has widely been used as a worldwide pollution marker. Various classes of organic pollutants such as pesticides, personal care products, PAHs, flame retardants, biomass burning markers, and many others emerging contaminants have been regularly detected in Arctic samples. Although numerous papers have been published reporting data from the Canadian, Danish, and Norwegian Arctic regions, the environmental situation in Russian Arctic remains mostly underreported. Snow analysis is known to be used for monitoring air pollution in the regions with cold climate in both short-term and long-term studies. This paper presents the results of a nontargeted study on the semivolatile organic compounds detected and identified in snow samples collected at the Russian Artic Archipelago Novaya Zemlya in June 2016. Gas chromatography coupled to a high-resolution time-of-flight mass spectrometer enabled the simultaneous detection and quantification of a variety of pollutants including those from the US Environmental Protection Agency (EPA) priority pollutants list, emerging contaminants (plasticizers, flame retardants-only detection), as well as the identification of novel Arctic organic pollutants, (e.g., fatty acid amides and polyoxyalkanes). The possible sources of these novel pollutants are also discussed.GC-HRMS enabled the detection and identification of emerging contaminants and novel organic pollutants in the Arctic, e.g., fatty amides and polyoxyalkanes.
Afficher plus [+] Moins [-]Molecular identification of polymers and anthropogenic particles extracted from oceanic water and fish stomach – A Raman micro-spectroscopy study
2018
Ghosal, Sutapa | Chen, Michael | Wagner, Jeff | Wang, Zhong-Min | Wall, Stephen
Pacific Ocean trawl samples, stomach contents of laboratory-raised fish as well as fish from the subtropical gyres were analyzed by Raman micro-spectroscopy (RMS) to identify polymer residues and any detectable persistent organic pollutants (POP). The goal was to access specific molecular information at the individual particle level in order to identify polymer debris in the natural environment. The identification process was aided by a laboratory generated automated fluorescence removal algorithm. Pacific Ocean trawl samples of plastic debris associated with fish collection sites were analyzed to determine the types of polymers commonly present. Subsequently, stomach contents of fish from these locations were analyzed for ingested polymer debris. Extraction of polymer debris from fish stomach using KOH versus ultrapure water were evaluated to determine the optimal method of extraction. Pulsed ultrasonic extraction in ultrapure water was determined to be the method of choice for extraction with minimal chemical intrusion. The Pacific Ocean trawl samples yielded primarily polyethylene (PE) and polypropylene (PP) particles >1 mm, PE being the most prevalent type. Additional microplastic residues (1 mm - 10 μm) extracted by filtration, included a polystyrene (PS) particle in addition to PE and PP. Flame retardant, deca-BDE was tentatively identified on some of the PP trawl particles. Polymer residues were also extracted from the stomachs of Atlantic and Pacific Ocean fish. Two types of polymer related debris were identified in the Atlantic Ocean fish: (1) polymer fragments and (2) fragments with combined polymer and fatty acid signatures. In terms of polymer fragments, only PE and PP were detected in the fish stomachs from both locations. A variety of particles were extracted from oceanic fish as potential plastic pieces based on optical examination. However, subsequent RMS examination identified them as various non-plastic fragments, highlighting the importance of chemical analysis in distinguishing between polymer and non-polymer residues.
Afficher plus [+] Moins [-]Fatty acid composition, enzyme activities and metallothioneins in Donax trunculus (Mollusca, Bivalvia) from polluted and reference sites in the Gulf of Annaba (Algeria): Pattern of recovery during transplantation
2018
Rabei, Amina | Hichami, Aziz | Beldi, Hayet | Bellenger, Sandrine | Khan, Naim Akhtar | Soltani, Noureddine
The gulf of Annaba, the most important touristic and economic coastal zone located in Northeast Algeria, is contaminated by several pollutants from urban, agricultural, harbor and industrial activities. Elevated levels of heavy metals were detected in a locally prevalent edible mollusk Donax trunculus (Bivalvia, Donacidae) widely used as a sentinel species for the assessment of marine pollution. The present work aims to measure the difference between two localities, one being full of different pollutants (Sidi Salem) and the other being relatively clean (El Battah) and to evaluate the ability of D. trunculus to overcome the environmental stress during a transplantation experiment by a determination of fatty acid profile, the enzymes activities and the level of metallothioneins (MTs), a biomarker of metallic contamination. Adults of D. trunculus were collected at Sidi Salem (contaminated site) and transplanted into El Battah (reference site) for 21 days in cages (60 × 60 × 60 cm with a 2 mm mesh). Biochemical analyzes were conducted at different times (0, 7, 14 and 21 days). At 0-day experiment: the rate of the fatty acids, the enzymes activities and MT levels at the site of Sidi Salem (polluted site) were significantly different from those of El Battah. During the transplantation a gradual restoration of fatty acids rates, enzymes activities and MT levels was observed. At the end of the period of transplantation, the values are comparable to those of El Battah. A two-way ANOVA (time, site) on data revealed significant effects of time and site. Overally, D. trunculus is able to induce its detoxification system and to restore relatively rapidly the status of individuals from the reference site (El Battah).
Afficher plus [+] Moins [-]