Affiner votre recherche
Résultats 1-10 de 77
Adaptive resilience of roadside trees to vehicular emissions via leaf enzymatic, physiological, and anatomical trait modulations
2022
Unplanned urbanization and heavy automobile use by the rapidly growing population contribute to a variety of environmental issues. Roadside plants can mitigate air pollution by modifying their enzymatic activity, physiological and anatomical traits. Plant enzymes, physiological and anatomical traits play an important role in adaptation and mitigation mechanisms against vehicular emissions. There is a significant gap in understanding of how plant enzymes and anatomical traits respond or how they participate in modulating the effect of vehicular emissions/air pollution. Modulation of leaf anatomical traits is also useful in regulating plant physiological behavior. Hence, the present study was conducted to evaluate the effects of vehicular pollution on the enzymatic activity, physiological, and anatomical traits of plant species that grow in forests (S1) and alongside roads (S2-1 km away from the S1 site) during different seasons. The present study examines four commonly found roadside tree species i.e. Grevillea robusta, Cassia fistula, Quercus leucotrichophora and Cornus oblonga. The study found that the activities of catalase and phenylalanine ammonium enzymes were higher in G. robusta species of roadside than control site (S1). Non-enzymatic antioxidants such as flavonoid and phenol were also found in higher concentrations in roadside tree species during the summer season. However, the measured values of physiological traits were higher in Q. leucotrichophora tree species of S1 during the summer season. When compared to the other species along the roadside, Q. leucotrichophora had the highest number of stomata and epidermal cells during the summer season. Hence, we found that tree species grown along the roadside adapted towards vehicular emissions by modulating their enzymatic, physiological, and anatomical traits to mitigate the effect of air pollution.
Afficher plus [+] Moins [-]Ethylene positively regulates Cd tolerance via reactive oxygen species scavenging and apoplastic transport barrier formation in rice
2022
Chen, Haifei | Zhang, Quan | Lv, Wei | Yu, Xiaoyi | Zhang, Zhenhua
Ethylene regulates plant root growth and resistance to environment stress. However, the role and mechanism of ethylene signaling in response to Cd stress in rice remains unclear. Here, we revealed that ethylene signaling plays a positive role in the resistance of rice to Cd toxicity. Blocking the ethylene signal facilitated root elongation under normal conditions, but resulted in severe oxidative damage and inhibition of root growth under Cd stress. Conversely, ethylene signal enhancement by EIN2 overexpression caused root bending, similar to the response of roots to Cd stress, and displayed higher Cd tolerance than the wildtype (WT) plants. Comparative transcriptome analysis indicated EIN2-mediated upregulation of genes involved in flavonoid biosynthesis and peroxidase activity under Cd stress. The synthesis of phenolic acids and flavonoids were positively regulated by ethylene. Thus, the ein2 (ethylene insensitive 2) mutants displayed lower ROS scavenging capacity than the WT. Moreover, a significant increase in Cd accumulation and relatively increased apoplastic flow were observed in the root apex of the ein2 mutant compared with the WT plants. Overall, EIN2-mediated Cd resistance in rice is mediated by the upregulation of flavonoid biosynthesis and peroxidase activity to induce ROS scavenging, and apoplastic transport barrier formation reduces Cd uptake.
Afficher plus [+] Moins [-]Effects of polystyrene nanoplastics on lead toxicity in dandelion seedlings
2022
Increasing rates of commercialization and industrialization have led to the comprehensive evaluation of toxic effects of microplastics on crop plants. However, research on the impact of functionalized polystyrene nanoplastics on the toxicity of heavy metals remains limited. This study investigated the effects of polystyrene, carboxy-modified polystyrene, and amino-modified polystyrene on lead (Pb) toxicity in dandelion seedlings. The results showed that carboxy -modified polystyrene with a negative charge absorbed more Pb²⁺ than polystyrene and amino-modified polystyrene, and their maximum adsorption amounts were 5.328, 0.247, and 0.153 μg g⁻¹, respectively. The hydroponic experiment demonstrated that single amino-modified polystyrene was more toxic to dandelion seedlings than polystyrene and carboxy-modified polystyrene. The presence of Pb²⁺ was found to increase antioxidant enzymes (superoxide dismutase and catalase) and non-antioxidant enzymes (glutathione and ascorbic acid) activities in response to excessive reactive oxygen species in dandelion leaves and roots treated with polystyrene and carboxy-modified polystyrene, while it did not change much when amino-modified polystyrene was added. Interestingly, compared with single Pb²⁺, the addition of amino-modified polystyrene with positive charges induced an obvious decrease in the above parameters; however, they declined slightly in the treatments with polystyrene and carboxy-modified polystyrene despite a stronger adsorption capacity for Pb²⁺. Similarly, the bioactive compounds, including flavonoids, polyphenols, and polysaccharides in dandelion, showed a scavenging effect on O₂⁻ and H₂O₂, thereby inhibiting the accumulation and reducing medicinal properties. This study found that the effects of microplastics on the uptake, distribution, and toxicity of heavy metals depended on the nanoparticle surface charge.
Afficher plus [+] Moins [-]Maize roots and shoots show distinct profiles of oxidative stress and antioxidant defense under heavy metal toxicity
2020
AbdElgawad, Hamada | Zinta, Gaurav | Hamed, Badreldin A. | Selim, Samy | Beemster, Gerrit | Hozzein, Wael N. | Wadaan, Mohammed A.M. | Asard, Han | Abuelsoud, Walid
Heavy metal accumulation in agricultural land causes crop production losses worldwide. Metal homeostasis within cells is tightly regulated. However, homeostasis breakdown leads to accumulation of reactive oxygen species (ROS). Overall plant fitness under stressful environment is determined by coordination between roots and shoots. But little is known about organ specific responses to heavy metals, whether it depends on the metal category (redox or non-redox reactive) and if these responses are associated with heavy metal accumulation in each organ or there are driven by other signals. Maize seedlings were subjected to sub-lethal concentrations of four metals (Zn, Ni, Cd and Cu) individually, and were quantified for growth, ABA level, and redox alterations in roots, mature leaves (L1,2) and young leaves (L3,4) at 14 and 21 days after sowing (DAS). The treatments caused significant increase in endogenous metal levels in all organs but to different degrees, where roots showed the highest levels. Biomass was significantly reduced under heavy metal stress. Although old leaves accumulated less heavy metal content than root, the reduction in their biomass (FW) was more pronounced. Metal exposure triggered ABA accumulation and stomatal closure mainly in older leaves, which consequently reduced photosynthesis. Heavy metals induced oxidative stress in the maize organs, but to different degrees. Tocopherols, polyphenols and flavonoids increased specifically in the shoot under Zn, Ni and Cu, while under Cd treatment they played a minor role. Under Cu and Cd stress, superoxide dismutase (SOD) and dehydroascorbate reductase (DHAR) activities were induced in the roots, however ascorbate peroxidase (APX) activity was only increased in the older leaves. Overall, it can be concluded that root and shoot organs specific responses to heavy metal toxicity are not only associated with heavy metal accumulation and they are specialized at the level of antioxidants to cope with.
Afficher plus [+] Moins [-]Differential responses of two cyanobacterial species to R-metalaxyl toxicity: Growth, photosynthesis and antioxidant analyses
2020
Hamed, Seham M. | Hassan, Sherif H. | Selim, Samy | Wadaan, Mohammed A.M. | Mohany, Mohamed | Hozzein, Wael N. | AbdElgawad, Hamada
Metalaxyl is a broad-spectrum chiral fungicide that used for the protection of plants, however extensive use of metalaxyl resulted in serious environmental problems. Thus, a study on the detoxification mechanism in algae/cyanobacteria and their ability for phycoremediation is highly recommended. Here, we investigated the physiological and biochemical responses of two cyanobacterial species; Anabaena laxa and Nostoc muscorum to R-metalaxyl toxicity as well as their ability as phycoremediators. Two different levels of R-metalaxyl, at mild (10 mg/L) and high dose (25 mg/L), were applied for one-week. We found that A. laxa absorbed and accumulated more intracellular R-metalaxyl compared to N. muscorum. R-metalaxyl, which triggered a dose-based reduction in cell growth, photosynthetic pigment content, and photosynthetic key enzymes’ activities i.e., phosphoenolpyruvate carboxylase (PEPC) and ribulose‒1,5‒bisphosphate carboxylase/oxygenase (RuBisCo). These decreases were significantly less pronounced in A. laxa. On the other hand, R-metalaxyl significantly induced oxidative damage markers, e.g., H₂O₂ levels, lipid peroxidation (MDA), protein oxidation and NADPH oxidase activity. However, these increases were also lower in A. laxa compared to N. muscorum. To alleviate R-metalaxyl toxicity, A. laxa induced the polyphenols, flavonoids, tocopherols and glutathione (GSH) levels as well as peroxidase (POX), glutathione peroxidase (GPX), glutathione reductase (GR) and glutathione-s-transferase (GST) enzyme activities. On the contrary, the significant induction of antioxidants in N. muscorum was restricted to ascorbate, catalase (CAT) and ascorbate peroxidase (APX), dehydroascorbate reductase (DHAR) enzyme activities. Although A. laxa accumulated more R-metalaxyl, it experienced less stress due to subsequent induction of antioxidants. Therefore, A. laxa may be a promising R-metalaxyl phycoremediator. Our results provided basic data for understanding the ecotoxicology of R-metalaxyl contamination in aquatic habitats and the toxicity indices among cyanobacteria.
Afficher plus [+] Moins [-]Is guava phenolic metabolism influenced by elevated atmospheric CO2?
2015
Mendes de Rezende, Fernanda | Pereira de Souza, Amanda | Buckeridge, Marcos Silveira | Maria Furlan, Cláudia
Seedlings of Psidium guajava cv. Pedro Sato were distributed into four open-top chambers: two with ambient CO2 (∼390 ppm) and two with elevated CO2 (∼780 ppm). Monthly, five individuals of each chamber were collected, separated into root, stem and leaves and immediately frozen in liquid nitrogen. Chemical parameters were analyzed to investigate how guava invests the surplus carbon. For all classes of phenolic compounds analyzed only tannins showed significant increase in plants at elevated CO2 after 90 days. There was no significant difference in dry biomass, but the leaves showed high accumulation of starch under elevated CO2. Results suggest that elevated CO2 seems to be favorable to seedlings of P. guajava, due to accumulation of starch and tannins, the latter being an important anti-herbivore substance.
Afficher plus [+] Moins [-]Antagonism of phenanthrene cytotoxicity for human embryo lung fibroblast cell line HFL-I by green tea polyphenols
2011
Mei, Xin | Wu, Yuan-yuan | Mao, Xiao | Tu, You-Ying
Polycyclic aromatic hydrocarbons (PAHs) have been detected in some commercial teas around the world and pose a threat to tea consumers. However, green tea polyphenols (GTP) possess remarkable antioxidant and anticancer effects. In this study, the potential of GTP to block the toxicity of the model PAH phenanthrene was examined in human embryo lung fibroblast cell line HFL-I. Both GTP and phenanthrene treatment individually caused dose-dependent inhibition of cell growth. A full factorial design experiment demonstrated that the interaction of phenanthrene and GTP significantly reduced growth inhibition. Using the median effect method showed that phenanthrene and GTP were antagonistic when the inhibitory levels were less than about 50%. Apoptosis and cell cycle detection suggested that only phenanthrene affected cell cycle significantly and caused cell death; GTP lowered the mortality of HFL-I cells exposed to phenanthrene; However, GTP did not affect modulation of the cell cycle by phenanthrene.
Afficher plus [+] Moins [-]Selenium content and nutritional quality of Brassica chinensis L enhanced by selenium engineered nanomaterials: The role of surface charge
2022
Wang, Chuanxi | Liu, Xiaofei | Chen, Feiran | Yue, Le | Cao, Xuesong | Li, Jing | Cheng, Bingxu | Wang, Zhenyu | Xing, Baoshan
Selenium engineered nanomaterials (Se ENMs)-enabled agriculture has developed rapidly, however, the roles of surface charge in the bioavailability and enrichment efficiency of Se ENMs are still unknown. Herein, various Se ENMs of homogenous size (40–60 nm) and different surface charges (3.2 ± 0.7, −29.0 ± 0.4, and 45.5 ± 1.3 mV) were prepared to explore the Se content and nutritional quality in Brassica chinensis L. The results demonstrated that soil application of various Se ENMs (0.05 mg kg⁻¹) displayed different bio-availabilities via modulating the secretion of root exudates (e.g., tartaric, malic, and citric acids), microbial community composition (e.g., Flavobacterium, Pseudomonas, Paracoccus, Bacillus and Rhizobium) and root cell wall. Negatively charged Se ENMs (Se (−)) showed the highest Se content in the shoot of B. chinensis (3.7-folds). Se (−) also significantly increased yield (156.9%) and improved nutritional quality (e.g., ascorbic acid, amino acids, flavonoids, fatty acids, and tricarboxylic acid) of B. chinensis. Moreover, after harvest, the Se (−) did not lead to significant change in Se residue in soil, but the amount of Se residue in soil was increased by 5.5% after applying the traditional Se fertilizer (selenite). Therefore, this study provides useful information for producing Se-fortified agricultural products, while minimizing environmental risk.
Afficher plus [+] Moins [-]Mitigation of zinc toxicity through differential strategies in two species of the cyanobacterium Anabaena isolated from zinc polluted paddy field
2020
Chakraborty, Sindhunath | Mishra, Arun K.
The present study describes the physiological and biochemical mechanisms of zinc tolerance in two heterocytous cyanobacteria i.e. Anabaena doliolum and Anabaena oryzae, treated with their respective LC₅₀ concentrations of zinc (3 and 4.5 mg L⁻¹) for eight days. The feedbacks were examined in terms of growth, metabolism, zinc exclusion, zinc accumulation, oxidative stress, antioxidants and metallothionein contents. Although the growth and metabolic activities were reduced in both the cyanobacterium, maximum adversity was noticed in A. doliolum. The higher order of abnormalities in A. doliolum was attributed to excessive accumulation of zinc and enhanced reactive oxygen species (ROS) production. However, the comparatively higher growth and metabolic activities of A. oryzae were ascribed to the lower accumulation of zinc as a result of released polysaccharides mediated zinc exclusion, synthesis of zinc chelating metallothioneins and subsequent less production of ROS. The oxidative stress and macromolecular damages were prominent in both the cyanobacterium but the condition was much harsher in A. doliolum which may be explained by its comparatively low antioxidative enzyme activities (SOD, APX and GR) and smaller amount of ascorbate-glutathione-tocopherol contents than that of A. oryzae. However, sustenance of 50% growth by A. doliolum under zinc stress despite severe cellular damages was attributed to the enhanced synthesis of phenolics, flavonoids, and proline. Thus, differential zinc tolerance in A. doliolum and A. oryzae is possibly the outcome of their distinct mitigation strategies. Although the two test organisms followed pseudo second order kinetics model during zinc biosorption yet they exhibited differential zinc biosorption capacity. The cyanobacterium A. oryzae was found to be more efficient in removing zinc as compared to A. doliolum and this efficiency makes A. oryzae a promising candidate for the phycoremediation of zinc polluted environments.
Afficher plus [+] Moins [-]24-Epibrassinolide alleviates organic pollutants-retarded root elongation by promoting redox homeostasis and secondary metabolism in Cucumis sativus L
2017
Ahammed, Golam Jalal | He, Bei-Bei | Qian, Xiang-Jie | Zhou, Yan-Hong | Shi, Kai | Zhou, Jie | Yu, Jing-Quan | Xia, Xiao-Jian
Environmental pollution by organic pollutants (OPs) has become a global concern due to its detrimental effects on the environment and human health. As plants are used to remediate contaminated sites, understanding the responses of plants to various OPs and fortification of plant tolerance are of great significance. In this work, we studied the biochemical and molecular responses of cucumber plants to three well-known OPs, 2,4,6-trichlorophenol, chlorpyrifos and oxytetracycline in the absence or presence of 24-epibrassinolide (EBR), a potent regulator of plant growth and stress tolerance. The results showed that the selected three OPs retarded root elongation; however, the phytotoxic effects of OPs were attenuated by exogenous EBR. OPs induced accumulations of both hydrogen peroxide (H2O2) and nitric oxide (NO) in root tips and resulted in an increased malondialdehyde (MDA) content, an indicator of membrane lipid peroxidation. Exogenous EBR reduced accumulations of H2O2, NO and MDA in the roots by increasing the expression of antioxidant and detoxification genes and the activities of the corresponding enzymes. Intriguingly, EBR not only promoted the activities of glutathione S-transferase and glutathione reductase, but also increased the content of reduced glutathione without altering the content of oxidized glutathione, which resulted in a reduced redox state under OPs stress. Furthermore, EBR increased the free radical scavenging capacity, flavonoid content and the activity and transcription of secondary metabolism related enzymes. Our results suggest that EBR treatment may fortify secondary metabolism to enhance antioxidant capacity in response to OPs treatment, which might have potential implication in phytoremediation of OPs.
Afficher plus [+] Moins [-]