Affiner votre recherche
Résultats 1-10 de 33
The role of NLRP3 in lead-induced neuroinflammation and possible underlying mechanism Texte intégral
2021
Su, Peng | Wang, Diya | Cao, Zipeng | Chen, Jingyuan | Zhang, Jianbin
Neuroinflammation induced by lead exposure (Pb) is a major cause of neurotoxicity of Pb in the central nervous system (CNS). The NLR family, domain of pyrin containing 3 (NLRP3) involves in various neurological diseases, while the question of whether NLRP3 plays a role in lead-induced neuroinflammation has not yet been reported.Developmental and knockout (KO) NLRP3 mice were used to establish two in vivo models, and BV2 cells were used to establish an in vitro model. Behavioral and electrophysiologic tests were used to assess the neurotoxicity of Pb, and immunofluorescence staining was used to assess neuroinflammation. Real-time PCR and western blot were performed to examine the mRNA and protein levels of inflammatory cytokines and NLRP3 inflammasomes. siRNA technology was used to block NLRP3 expression.Pb exposure led to neural injure and microglial activation in the hippocampus region, while minocycline intervention attenuated Pb-induced neurotoxicity by inhibiting neuroinflammation. Pb increased the expression of NLRP3 and promoted cleavage of caspase-1 in mRNA and protein levels, and minocycline partially reversed the effects of Pb on NLRP3 inflammasomes. Blocking of NLRP3 by KO mice or siRNA attenuated neural alterations induced by Pb, weakened microglial activation in vivo and in vitro as well, without affecting the accumulation of Pb. Pb increased autophagic protein levels and phosphorylation of NF-κB, while suppressing autophagy or NF-κB inhibited Pb's effects on NLRP3.NLRP3 is involved in the regulation of Pb-induced neurotoxicity. These findings expand mechanism research of Pb neurotoxicity and may help establish new prevention strategies for Pb neurotoxicity.
Afficher plus [+] Moins [-]Fluoride induced mitochondrial impairment and PINK1-mediated mitophagy in Leydig cells of mice: In vivo and in vitro studies Texte intégral
2020
Liang, Zhen | Gao, Yan | He, Yuyang | Han, Yongli | Manthari, Ram Kumar | Tikka, Chiranjeevi | Chen, Chenkai | Wang, Jundong | Zhang, Jianhai
It is very important to explore the potential harm and underlying mechanism of fluoride due to the extensive distribution and the significant health risks of fluoride in environment. The objective of this study to investigate whether fluoride can induce mitochondrial impairment and mitophagy in testicular cells. For this, 40 male mice were randomly divided into four groups treated with 0, 0.6, 1.2, 2.4 mM NaF deionized water, respectively, for 90 days continuously. The results showed that mitophagy was triggered by F in testicular tissues, especially in the Leydig cells by transmission electron microscopy and mitophagy receptor PHB2 locations by immunofluorescence. Furthermore, TM3 Leydig cells line was employed and treated with 0, 0.125, 0.25, and 0.5 mM NaF for 24 h. The mitochondrial function indicators and mitophagy maker PHB2, COX IV and regulator PINK1 in transcript and protein levels in Leydig cells were examined by the methods of qRT-PCR, western blotting, and immunofluorescence co-localization. The results showed that fluoride decreased the mitochondrial membrane potential with a concomitant increase in the number of lysosomes. Meanwhile, fluoride exposure also increased the expressions of PINK1 and PHB2 in TM3 Leydig cells. These results revealed that fluoride could induce mitochondrial impairment and excessive PINK1/Parkin-mediated mitophagy in testicular cells, especially in Leydig cells, which could contribute to the elucidation of the mechanisms of F-induced male reproductive toxicity.
Afficher plus [+] Moins [-]Role of poly (ADP-ribose) polymerase-1 in cadmium-induced cellular DNA damage and cell cycle arrest in rat renal tubular epithelial cell line NRK-52E Texte intégral
2020
Luo, Tongwang | Yu, Qi | Zou, Hui | Zhao, Hongyan | Gu, Jianhong | Yuan, Yan | Zhu, Jiaqiao | Bian, Jianchun | Liu, Zongping
With the development of modern industry, the problem of cadmium (Cd) pollution cannot be ignored and its toxicity has caused great personal injury to humans. Poly (ADP-ribose) polymerase 1 (PARP-1) protein is a research hotspot in recent years, the research we have published shows that 5 μM of Cd-treated NRK-52E cells activated PARP-1, but the specific effects of PARP-1 on DNA damage and cell cycle is unclear. Therefore, the purpose of this study is to reveal the effect of Cd on DNA damage and cell cycle arrest in NRK-52E cells, in addition, to investigate the role of PARP-1 in mediating this effect. Western blotting, comet assay, QRT-PCR, immunofluorescence, and co-immunoprecipitation were used to detect DNA damage and cell cycle-associated protein expression. Flow cytometry was used to assess cell cycle distribution and the apoptosis rates. Results showed that after the increase in treatment time and Cd concentration, the degree of DNA damage was significantly increased, and a transition from G0/G1 to S phase arrest was observed. In addition, inhibition of PARP-1 expression exacerbated cell damage and cell cycle arrest when DNA damage was low, but attenuated cell damage and even cell cycle arrest when DNA damage was severe. These findings in this study indicate that Cd causes DNA damage in NRK-52E cells, leading to cell cycle arrest at different phases depending on the degree of DNA damage. Moreover, PARP-1 plays an important role in mediating this effect, when DNA damage is low, it functions in DNA repair, however, when DNA damage is severe, it aggravates cell damage and induces cell death.
Afficher plus [+] Moins [-]Deoxynivalenol induced apoptosis and inflammation of IPEC-J2 cells by promoting ROS production Texte intégral
2019
Kang, Ruifen | Li, Ruonan | Dai, Pengyuan | Li, Zhaojian | Li, Yansen | Li, Chunmei
Deoxynivalenol (DON) frequently detected in a wide range of foods and feeds, inducing cytotoxicity to animals and humans. To investigate the underlying mechanism of DON-induced apoptosis and inflammation in porcine small intestinal epithelium, intestinal porcine epithelial cells (IPEC-J2 cells) were chosen as objects, and were treated by different concentrations (0 μg/mL, 0.2 μg/mL, 0.5 μg/mL, 1.0 μg/mL, 2.0 μg/mL, 4.0 μg/mL, 6.0 μg/mL) of DON. The results showed that DON induced cytotoxicity of IPEC-J2 cells in a dose-dependent manner, which is demonstrated by decreasing cell viability. Compared with the control group, DON treatment increased the expressions of genes associated with inflammation and apoptosis, such as interleukin-1 beta (IL-1β), cyclooxgenase-2 (COX-2), interleukin-6 (IL-6), tumour necrosis factor-alpha (TNF-α), caspase-3, caspase-8, caspase-9, and decreased the cell anti-oxidative status. Protein immunofluorescence showed increased expression of caspase-3, nuclear factor kB (NF-κB) and phosphorylated NF-κB in IPEC-J2 cells. DON increased the content of intracellular reactive oxygen species (ROS) of IPEC-J2 cells. N-Acetyl-L-cysteine (NAC), a commonly used antioxidant, blocked DON-induced ROS generation, alleviated the DON-induced apoptosis and inflammation. These results suggested that DON-induced impairment of IPEC-J2 cells is possibly due to increased ROS production, and expressions of genes and proteins associated with apoptosis and inflammation.
Afficher plus [+] Moins [-]Excessive ER stress and the resulting autophagic flux dysfunction contribute to fluoride-induced neurotoxicity Texte intégral
2018
Niu, Qiang | Chen, Jingwen | Xia, Tao | Li, Pei | Zhou, Guoyu | Xu, Chunyan | Zhao, Qian | Dong, Lixin | Zhang, Shun | Wang, Aiguo
Fluoride is capable of inducing neurotoxicity, but its mechanisms remain elusive. This study aimed to explore the roles of endoplasmic reticulum (ER) stress and autophagy in sodium fluoride (NaF)-induced neurotoxicity, focusing on the regulating role of ER stress in autophagy. The in vivo results demonstrated that NaF exposure impaired the learning and memory capabilities of rats, and resulted in histological and ultrastructural abnormalities in rat hippocampus. Moreover, NaF exposure induced excessive ER stress and associated apoptosis, as manifested by elevated IRE1α, GRP78, cleaved caspase-12 and cleaved-caspase-3, as well as defective autophagy, as shown by increased Beclin1, LC3-II and p62 expression in hippocampus. Consistently, the in vitro results further verified the findings of in vivo study that NaF induced excessive ER stress and defective autophagy in SH-SY5Y cells. Notably, inhibition of autophagy in NaF-treated SH-SY5Y cells with Wortmannin or Chloroquine decreased, while induction of autophagy by Rapamycin increased the cell viability. These results were correlated well with the immunofluorescence observations, thus confirming the pivotal role of autophagic flux dysfunction in NaF-induced cell death. Importantly, mitigation of ER stress by 4-phenylbutyrate in NaF-treated SH-SY5Y cells inhibited the expressions of autophagy markers, and decreased cell apoptosis. Taken together, these data suggest that neuronal death resulted from excessive ER stress and autophagic flux dysfunction contributes to fluoride-elicited neurotoxicity. Moreover, the autophagic flux dysfunction was mediated by excessive ER stress, which provided novel insight into a better understanding of fluoride-induced neurotoxicity.
Afficher plus [+] Moins [-]Airborne particulate matter (PM2.5) triggers autophagy in human corneal epithelial cell line Texte intégral
2017
Fu, Qiuli | Lyu, Danni | Zhang, Lifang | Qin, Zhenwei | Tang, Qiaomei | Yin, Houfa | Lou, Xiaoming | Chen, Zhijian | Yao, Ke
To investigate particulate matter (PM2.5)-induced damage to human corneal epithelial cells (HCECs) and to determine the underlying mechanisms.HCECs were exposed to PM2.5 at a series of concentrations for various periods. Cell viability was measured by using a 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. Cell proliferation was evaluated via 5-ethynyl-2’-deoxyuridine (EdU) analysis, while autophagy was determined by immunofluorescence and Western blot.PM2.5-induced cell damage of HCECs occurred in a time- and dose-dependent manner. Decreased cell viability and proliferation as well as increased apoptosis were observed in HCECs after PM2.5 exposure for 24 h. Autophagy in HCECs was slightly inhibited in the early stage (before 4 h) of exposure but significantly activated in the late stage (after 24 h), as evidenced by a decrease in the former and increase in the latter of the expression of the autophagy-associated markers LC3B, ATG5, and BECN1. Interestingly, rapamycin, an autophagy activator, attenuated early-stage but aggravated late-stage PM2.5-induced cell damage, suggesting that the role of autophagy in HCECs may change over time during PM2.5 exposure. In addition, in the early stage, the expression of LC3B and ATG5 increased in cells co-treated with rapamycin and PM2.5 compared to rapamycin-only or PM2.5-only treated cells, suggesting that autophagy may benefit cell viability after PM2.5 exposure.The results indicate the potential role of autophagy in the treatment of PM2.5-induced ocular corneal diseases and provide direct evidence for the cytotoxicity, possibly involving an autophagic process, of PM2.5 in HCECs.
Afficher plus [+] Moins [-]Histopathological effects, responses of oxidative stress, inflammation, apoptosis biomarkers and alteration of gene expressions related to apoptosis, oxidative stress, and reproductive system in chlorpyrifos-exposed common carp (Cyprinus carpio L.) Texte intégral
2017
Altun, Serdar | Özdemir, Selçuk | Arslan, Harun
In this study, we aimed to identify the toxic effects of chlorpyrifos exposure on the tissues of common carp. For this purpose, we evaluated histopathological changes in the brain, gills, liver, kidney, testis, and ovaries after 21 days of chlorpyrifos exposure. Activation of 8-OHdG, cleaved caspase-3, and iNOS were assesed by immunofluorescence assay in chlorpyrifos-exposed brain and liver tissue. Additionally, we measured the expression levels of caspase-3, caspase-8, iNOS, MT1, CYP1A, and CYP3A genes in chlorpyrifos-exposed brain tissue, as well as the expression levels of FSH and LH genes in chlorpyrifos-exposed ovaries, using qRT-PCR. We observed severe histopathological lesions, including inflammation, degeneration, necrosis, and hemorrhage, in the evaluated tissues of common carp after both high and low levels of exposure to chlorpyrifos. We detected strong and diffuse signs of immunofluorescence reaction for 8-OHdG, iNOS, and cleaved caspase-3 in the chlorpyrifos-exposed brain and liver tissues. Furthermore, we found that chlorpyrifos exposure significantly upregulated the expressions of caspase-3, caspase-8, iNOS, and MT1, and also moderately upregulated CYP1A and CYP3A in the brain tissue of exposed carp. We also noted downregulation of FSH and LH gene expressions in chlorpyrifos-exposed ovary tissues. Based on our results, chlorpyrifos toxication caused crucial histopathological lesions in vital organs, induced oxidative stress, inflammation, and apoptosis in liver and brain tissues, and triggered reproductive sterility in common carp. Therefore, we can propose that chlorpyrifos toxication is highly dangerous to the health of common carp. Moreover, chlorpyrifos pollution in the water could threaten the common carp population. Use of chlorpyrifos should be restricted, and aquatic systems should be monitored for chlorpyrifos pollution.
Afficher plus [+] Moins [-]Fluoride exposure cause colon microbiota dysbiosis by destroyed microenvironment and disturbed antimicrobial peptides expression in colon Texte intégral
2022
Zhu, Shi-quan | Liu, Jing | Han, Bo | Zhao, Wen-peng | Zhou, Bian-hua | Zhao, Jing | Wang, Hong-wei
Colon microenvironment and microbiota dysbiosis are closely related to various human metabolic diseases. In this study, a total of 72 healthy female mice were exposed to fluoride (F) (0, 25, 50 and 100 mg/L F⁻) in drinking water for 70 days. The effect of F on intestinal barrier and the diversity and composition in colon microbiota have been evaluated. Meanwhile, the relationship among F-induced colon microbiota alterations and antimicrobial peptides (AMPs) expression and short-chain fatty acids (SCFAs) level also been assessed. The results suggested that F decreased the goblet cells number and glycoprotein expression in colon. And further high-throughput 16S rRNA gene sequencing result demonstrated that F exposure induced the diversity and community composition of colonic microbiota significantly changes. Linear Discriminant Analysis Effect Size (LEfSe) analysis identified 11 predominantly characteristic taxa which may be the biomarker in response to F exposure. F-induced intestinal microbiota perturbations lead to the significantly decreased SCFAs levels in colon. Immunofluorescence results showed that F increased the protein expression of interleukin-17A (IL-17A) and IL-22 (P < 0.01) and disturbed the expression of interleukin-17 receptor A (IL-17RA) and IL-22R (P < 0.05 or P < 0.01). In addition, the increased expression of IL-17A and IL-22 cooperatively enhanced the mRNA expression of AMPs which response to F-induced microbiota perturbations. Collectively, destroyed microenvironment and disturbed AMPs are the primary reason of microbiota dysbiosis in colon after F exposure. Colonic homoeostasis imbalance would be helpful for finding the source of F-induced chronic systemic diseases.
Afficher plus [+] Moins [-]Mechanism of thorium-nitrate and thorium-dioxide induced cytotoxicity in normal human lung epithelial cells (WI26): Role of oxidative stress, HSPs and DNA damage Texte intégral
2021
Das, Sourav Kumar | Ali, Manjoor | Shetake, Neena G. | Dumpala, Rama Mohan R. | Pandey, Badri N. | Kumar, Amit
Inhalation represents the most prevalent route of exposure with Thorium-232 compounds (Th-nitrate/Th-dioxide)/Th-containing dust in real occupational scenario. The present study investigated the mechanism of Th response in normal human alveolar epithelial cells (WI26), exposed to Th-nitrate or colloidal Th-dioxide (1–100 μg/ml, 24–72 h). Assessment in terms of changes in cell morphology, cell proliferation (cell count), plasma membrane integrity (lactate dehydrogenase leakage) and mitochondrial metabolic activity (MTT reduction) showed that Th-dioxide was quantitatively more deleterious than Th-nitrate to WI26 cells. TEM and immunofluorescence analysis suggested that Th-dioxide followed a clathrin/caveolin-mediated endocytosis, however, membrane perforation/non-endocytosis seemed to be the mode of Th internalization in cells exposed to Th-nitrate. Th-estimation by ICP-MS showed significantly higher uptake of Th in cells treated with Th-dioxide than with Th-nitrate at a given concentration. Both Th-dioxide and nitrate were found to increase the level of reactive oxygen species, which seemed to be responsible for lipid peroxidation, alteration in mitochondrial membrane potential and DNA-damage. Amongst HSPs, the protein levels of HSP70 and HSP90 were affected differentially by Th-nitrate/dioxide. Specific inhibitors of ATM (KU55933) or HSP90 (17AAG) were found to increase the Th- cytotoxicity suggesting prosurvival role of these signaling molecules in rescuing the cells from Th-toxicity.
Afficher plus [+] Moins [-]Environmental exposure to 17β-trenbolone during adolescence inhibits social interaction in male mice Texte intégral
2021
Zhang, Shaozhi | Jiao, Zihao | Zhao, Xin | Sun, Mingzhu | Feng, Xizeng
Puberty is a critical period for growth and development. This period is sensitive to external stimuli, which ultimately affects the development of nerves and the formation of social behaviour. 17β-Trenbolone (17β-TBOH) is an endocrine disrupting chemicals (EDCs), which had been widely reported in aquatic vertebrates. But there is little known about the effects of 17β-TBOH on mammals, especially on adolescent neurodevelopment. In this study, we found that 17β-TBOH acute 1 h exposure can cause the activation of the dopamine circuit in pubertal male balb/c mice. At present, there is little known about the effects of puberty exposure of endocrine disruptors on these neurons/nerve pathways. Through a series of behavioural tests, exposure to 80 μgkg⁻¹ d⁻¹ of 17β-TBOH during adolescence increased the anxiety-like behaviour of mice and reduced the control of wheel-running behaviour and the response of social interaction behaviour. The results of TH immunofluorescence staining showed that exposure to 17β-TBOH reduced dopamine axon growth in the medial prefrontal cortex (mPFC). In addition, the results of real-time PCR showed that exposure to 17β-TBOH not only down-regulated the expression of dopamine axon development genes, but also affected the balance of excitatory/inhibitory signals in mPFC. In this research, we reveal the effects of 17β-TBOH exposure during adolescence on mammalian behaviour and neurodevelopment, and provide a reference for studying the origin of adolescent diseases.
Afficher plus [+] Moins [-]