Affiner votre recherche
Résultats 1-10 de 45
Combined use of open-air and indoor fumigation systems to study effects of SO<sub(2)> on leaching processes in Scots pine litter.
1991
Wookey P.A. | Ineson P.
Mercury transport, transformation and mass balance on a perspective of hydrological processes in a subtropical forest of China
2019
Sun, Tao | Ma, Ming | Wang, Xun | Wang, Yongmin | Du, Hongxia | Xiang, Yuping | Xu, Qinqin | Xie, Qing | Wang, Dingyong
Forest ecosystem has long been suggested as a vital component in the global mercury (Hg) biogeochemical cycling. However, there remains large uncertainties in understanding total Hg (THg) and methylmercury (MeHg) variations and their controlling factors during the whole hydrological processes in forest ecosystems. Here, we quantified Hg mass flow along hydrological processes of wet deposition, throughfall, stemflow, litter leachate, soil leachate, surface runoff, and stream, and litterfall Hg deposition, and air-forest floor elemental Hg (Hg⁰) exchange flux to set up a Hg mass balance in a subtropical forest of China. Results showed that THg concentration in stream was lower than that in wet deposition, while an opposite characteristic for MeHg concentration, and both THg and MeHg fluxes of stream were lower than those of wet deposition. Variations of THg and MeHg in throughfall and litter leachate had strong direct and indirect effects on controlling variations of THg and MeHg in surface runoff, soil leachate and stream, respectively. Especially, the net Hg methylation was suggested in the forest canopy and forest floor layers, and significant particulate bound Hg (PBM) filtration was observed in soil layers. The Hg mass balance showed that the litterfall Hg deposition was the main Hg input for forest floor Hg, and the elemental Hg vapor (Hg⁰) re-emission from forest floor was the dominant Hg output. Overall, we estimated the net THg input flux of 13.8 μg m⁻² yr⁻¹ and net MeHg input flux of 0.6 μg m⁻² yr⁻¹ within the forest ecosystem. Our results highlighted the important roles of forest canopy and forest floor to shape Hg in output flow, and the forest floor is a distinct sink of MeHg.
Afficher plus [+] Moins [-]An increase in precipitation exacerbates negative effects of nitrogen deposition on soil cations and soil microbial communities in a temperate forest
2018
Shi, Leilei | Zhang, Hongzhi | Liu, Tao | Mao, Peng | Zhang, Weixin | Shao, Yuanhu | Fu, Shenglei
World soils are subjected to a number of anthropogenic global change factors. Although many previous studies contributed to understand how single global change factors affect soil properties, there have been few studies aimed at understanding how two naturally co-occurring global change drivers, nitrogen (N) deposition and increased precipitation, affect critical soil properties. In addition, most atmospheric N deposition and precipitation increase studies have been simulated by directly adding N solution or water to the forest floor, and thus largely neglect some key canopy processes in natural conditions. These previous studies, therefore, may not realistically simulate natural atmospheric N deposition and precipitation increase in forest ecosystems. In a field experiment, we used novel canopy applications to investigate the effects of N deposition, increased precipitation, and their combination on soil chemical properties and the microbial community in a temperate deciduous forest. We found that both soil chemistry and microorganisms were sensitive to these global change factors, especially when they were simultaneously applied. These effects were evident within 2 years of treatment initiation. Canopy N deposition immediately accelerated soil acidification, base cation depletion, and toxic metal accumulation. Although increased precipitation only promoted base cation leaching, this exacerbated the effects of N deposition. Increased precipitation decreased soil fungal biomass, possible due to wetting/re-drying stress or to the depletion of Na. When N deposition and increased precipitation occurred together, soil gram-negative bacteria decreased significantly, and the community structure of soil bacteria was altered. The reduction of gram-negative bacterial biomass was closely linked to the accumulation of the toxic metals Al and Fe. These results suggested that short-term responses in soil cations following N deposition and increased precipitation could change microbial biomass and community structure.
Afficher plus [+] Moins [-]Different cesium-137 transfers to forest and stream ecosystems
2016
Sakai, Masaru | Gomi, Takashi | Negishi, Junjiro N. | Iwamoto, Aimu | Okada, Kengo
Understanding the mechanisms of ¹³⁷Cs movement across different ecosystems is crucial for projecting the environmental impact and management of nuclear contamination events. Here, we report differential movement of ¹³⁷Cs in adjacent forest and stream ecosystems. The food webs of the forest and stream ecosystems in our study were similar, in that they were both dominated by detrital-based food webs and the basal energy source was terrestrial litter. However, the concentration of ¹³⁷Cs in stream litter was significantly lower than in forest litter, the result of ¹³⁷Cs leaching from litter in stream water. The difference in ¹³⁷Cs concentrations between the two types of litter was reflected in the ¹³⁷Cs concentrations in the animal community. While the importance of ¹³⁷Cs fallout and the associated transfer to food webs has been well studied, research has been primarily limited to cases in a single ecosystem. Our results indicate that there are differences in the flow of ¹³⁷Cs through terrestrial and aquatic ecosystems, and that ¹³⁷Cs concentrations are reduced in both basal food resources and higher trophic animals in aquatic systems, where primary production is subsidized by a neighboring terrestrial ecosystem.
Afficher plus [+] Moins [-]Using foliar and forest floor mercury concentrations to assess spatial patterns of mercury deposition
2015
Blackwell, Bradley D. | Driscoll, Charles T.
We evaluated spatial patterns of mercury (Hg) deposition through analysis of foliage and forest floor samples from 45 sites across Adirondack Park, NY. Species-specific differences in foliar Hg were evident with the lowest concentrations found in first-year conifer needles and highest concentrations found in black cherry (Prunus serotina). For foliage and forest floor samples, latitude and longitude were negatively correlated with Hg concentrations, likely because of proximity to emission sources, while elevation was positively correlated with Hg concentrations. Elemental analysis showed moderately strong, positive correlations between Hg and nitrogen concentrations. The spatial pattern of Hg deposition across the Adirondacks is similar to patterns of other contaminants that originate largely from combustion sources such as nitrogen and sulfur. The results of this study suggest foliage can be used to assess spatial patterns of Hg deposition in small regions or areas of varied topography where current Hg deposition models are too coarse to predict deposition accurately.
Afficher plus [+] Moins [-]Gaseous mercury emissions from unsterilized and sterilized soils: The effect of temperature and UV radiation
2009
Choi, Hyun-Deok | Holsen, Thomas M.
Mercury (Hg) emissions from the soils taken from two different sites (deciduous and coniferous forests) in the Adirondacks were measured in outdoor and laboratory experiments. Some of the soil samples were irradiated to eliminate biological activity. The result from the outdoor measurements with different soils suggests the Hg emission from the soils is partly limited by fallen leaves covering the soils which helps maintain relatively high soil moisture and limits the amount of heat and solar radiation reaching the soil surface. In laboratory experiments exposure to UV-A (365 nm) had no significant effect on the Hg emissions while the Hg emissions increased dramatically during exposure to UV-B (302 nm) light suggesting UV-B directly reduced soil-associated Hg. Overall these results indicate that for these soils biotic processes have a relatively constant and smaller influence on the Hg emission from the soil than the more variable abiotic processes. Hg emission measurements from soils indicate that abiotic processes were more important than biotic processes in reducing Hg and controlling emissions.
Afficher plus [+] Moins [-]Regional patterns in foliar 15N across a gradient of nitrogen deposition in the northeastern US
2007
Pardo, L.H. | McNulty, S.G. | Boggs, J.L. | Duke, S.
Recent studies have demonstrated that natural abundance 15N can be a useful tool for assessing nitrogen saturation, because as nitrification and nitrate loss increase, δ15N of foliage and soil also increases. We measured foliar δ15N at 11 high-elevation spruce-fir stands along an N deposition gradient in 1987-1988 and at seven paired northern hardwood and spruce-fir stands in 1999. In 1999, foliar δ15N increased from -5.2 to -0.7[per thousand] with increasing N deposition from Maine to NY. Foliar δ15N decreased between 1987-1988 and 1999, while foliar %N increased and foliar C:N decreased at most sites. Foliar δ15N was strongly correlated with N deposition, and was also positively correlated with net nitrification potential and negatively correlated with soil C:N ratio. Although the increase in foliar %N is consistent with a progression towards N saturation, other results of this study suggest that, in 1999, these stands were further from N saturation than in 1987-1988. Foliar δ15N increased with increasing N deposition from Maine to NY, but decreased between 1987-1988 and 1999
Afficher plus [+] Moins [-]Increase of litterfall mercury input and sequestration during decomposition with a montane elevation in Southwest China
2022
Li, Xianming | Wang, Xun | Yuan, Wei | Lu, Zhiyun | Wang, Dingyong
Litterfall mercury (Hg) input has been regarded as the dominant Hg source in montane forest floor. To depict combining effects of vegetation, climate and topography on accumulation of Hg in montane forests, we comprehensively quantified litterfall Hg deposition and decomposition in a serial of subtropical forests along an elevation gradient on both leeward and windward slopes of Mt. Ailao, Southwest China. Results showed that the average litterfall Hg deposition increased from 12.0 ± 4.2 μg m⁻² yr⁻¹ in dry-hot valley shrub at 850–1000 m, 14.9 ± 6.8 μg m⁻² yr⁻¹ in mixed conifer-broadleaf forest at 1250–2400 m, to 23.1 ± 8.3 μg m⁻² yr⁻¹ in evergreen broadleaf forest at 2500–2650 m. Additionally, the windward slope forests had a significantly higher litterfall Hg depositions at the same altitude because the larger precipitation promoted the greater litterfall biomass production. The one-year litter Hg decomposition showed that the Hg mass of litter in dry-hot valley shrub decreased by 29%, while in mixed conifer-broadleaf and evergreen broadleaf forests increased by 22–48%. The dynamics of Hg in decomposing litter was controlled by the temperature mediated litter decomposition rate and the additional adsorption of environmental Hg during decomposition. Overall, our study highlights the litterfall mediated atmospheric mercury inputs and sequestration increase with the montane elevation, thus driving a Hg enhanced accumulation in the high montane forest.
Afficher plus [+] Moins [-]The interplay between atmospheric deposition and soil dynamics of mercury in Swiss and Chinese boreal forests: A comparison study
2022
Chen, Chaoyue | Huang, Jen-How | Meusburger, Katrin | Li, Kai | Fu, Xuewu | Rinklebe, Jörg | Alewell, Christine | Feng, Xinbin
Taking advantage of the different histories of Hg deposition in Davos Seehornwald in E-Switzerland and Changbai Mountain in NE-China, the influence of atmospheric deposition on Hg soil dynamics in forest soil profiles was investigated. Today, Hg fluxes in bulk precipitation were similar, and soil profiles were generally sinks for atmospherically deposited Hg at both sites. Noticeably, a net release of 2.07 μg Hg m⁻² yr⁻¹ from the Bs horizon (Podzol) in Seehornwald was highlighted, where Hg concentration (up to 73.9 μg kg⁻¹) and soil storage (100 mg m⁻³) peaked. Sequential extraction revealed that organic matter and crystalline Fe and Al hydr (oxide)-associated Hg decreased in the E horizon but increased in the Bs horizon as compared to the Ah horizon, demonstrating the coupling of Hg dynamics with the podzolisation process and accumulation of legacy Hg deposited last century in the Bs horizon. The mor humus in Seehornwald allowed Hg enrichment in the forest floor (182–269 μg kg⁻¹). In Changbai Mountain, the Hg concentrations in the Cambisol surface layer with mull humus were markedly lower (<148 μg kg⁻¹), but with much higher Hg soil storage (54–120 mg m⁻³) than in the Seehornwald forest floor (18–27 mg m⁻³). Thus, the vertical distribution pattern of Hg was influenced by humus form and soil type. The concentrations of Hg in soil porewater in Seehornwald (3.4–101 ng L⁻¹) and in runoff of Changbai Mountain (1.26–5.62 ng L⁻¹) were all low. Moreover, the pools of readily extractable Hg in the soils at both sites were all <2% of total Hg. Therefore, the potential of Hg release from the forest soil profile to the adjacent aquatic environment is currently low at both sites.
Afficher plus [+] Moins [-]Litterfall mercury reduction on a subtropical evergreen broadleaf forest floor revealed by multi-element isotopes
2021
Lu, Zhiyun | Yuan, Wei | Luo, Kang | Wang, Xun
Litterfall mercury (Hg) deposition is the dominant source of soil Hg in forests. Identifying reduction processes and tracking the fate of legacy Hg on forest floor are challenging tasks. Interplays between isotopes of carbon (C) and nitrogen (N) may shed some lights on Hg biogeochemical processes because their biogeochemical cycling closely links with organic matters. Isotope measurements at the evergreen broadleaf forest floor at Mt. Ailao (Mountain Ailao) display that δ²⁰²Hg and Δ¹⁹⁹Hg both significantly correlate with δ¹³C and δ¹⁵N in soil profiles. Data analysis results show that microbial reduction is the dominant process for the distinct δ²⁰²Hg shift (up to ∼1.0‰) between Oi and 0–10 cm surface mineral soil, and dark abiotic organic matter reduction is the main cause for the Δ¹⁹⁹Hg shift (∼-0.18‰). Higher N in foliage leads to greater Hg concentration, and Hg⁰ re-emission via microbial reduction on forest floor is likely linked to N release and immobilization on forest floor. We thus suggest that the enhanced N deposition in global forest ecosystems can potentially influence Hg uptake by vegetation and litter Hg sequestration on forest floor.
Afficher plus [+] Moins [-]