Affiner votre recherche
Résultats 1-10 de 45
Combined use of open-air and indoor fumigation systems to study effects of SO<sub(2)> on leaching processes in Scots pine litter.
1991
Wookey P.A. | Ineson P.
The interplay between atmospheric deposition and soil dynamics of mercury in Swiss and Chinese boreal forests: A comparison study Texte intégral
2022
Chen, Chaoyue | Huang, Jen-How | Meusburger, Katrin | Li, Kai | Fu, Xuewu | Rinklebe, Jörg | Alewell, Christine | Feng, Xinbin
Taking advantage of the different histories of Hg deposition in Davos Seehornwald in E-Switzerland and Changbai Mountain in NE-China, the influence of atmospheric deposition on Hg soil dynamics in forest soil profiles was investigated. Today, Hg fluxes in bulk precipitation were similar, and soil profiles were generally sinks for atmospherically deposited Hg at both sites. Noticeably, a net release of 2.07 μg Hg m⁻² yr⁻¹ from the Bs horizon (Podzol) in Seehornwald was highlighted, where Hg concentration (up to 73.9 μg kg⁻¹) and soil storage (100 mg m⁻³) peaked. Sequential extraction revealed that organic matter and crystalline Fe and Al hydr (oxide)-associated Hg decreased in the E horizon but increased in the Bs horizon as compared to the Ah horizon, demonstrating the coupling of Hg dynamics with the podzolisation process and accumulation of legacy Hg deposited last century in the Bs horizon. The mor humus in Seehornwald allowed Hg enrichment in the forest floor (182–269 μg kg⁻¹). In Changbai Mountain, the Hg concentrations in the Cambisol surface layer with mull humus were markedly lower (<148 μg kg⁻¹), but with much higher Hg soil storage (54–120 mg m⁻³) than in the Seehornwald forest floor (18–27 mg m⁻³). Thus, the vertical distribution pattern of Hg was influenced by humus form and soil type. The concentrations of Hg in soil porewater in Seehornwald (3.4–101 ng L⁻¹) and in runoff of Changbai Mountain (1.26–5.62 ng L⁻¹) were all low. Moreover, the pools of readily extractable Hg in the soils at both sites were all <2% of total Hg. Therefore, the potential of Hg release from the forest soil profile to the adjacent aquatic environment is currently low at both sites.
Afficher plus [+] Moins [-]Increase of litterfall mercury input and sequestration during decomposition with a montane elevation in Southwest China Texte intégral
2022
Li, Xianming | Wang, Xun | Yuan, Wei | Lu, Zhiyun | Wang, Dingyong
Litterfall mercury (Hg) input has been regarded as the dominant Hg source in montane forest floor. To depict combining effects of vegetation, climate and topography on accumulation of Hg in montane forests, we comprehensively quantified litterfall Hg deposition and decomposition in a serial of subtropical forests along an elevation gradient on both leeward and windward slopes of Mt. Ailao, Southwest China. Results showed that the average litterfall Hg deposition increased from 12.0 ± 4.2 μg m⁻² yr⁻¹ in dry-hot valley shrub at 850–1000 m, 14.9 ± 6.8 μg m⁻² yr⁻¹ in mixed conifer-broadleaf forest at 1250–2400 m, to 23.1 ± 8.3 μg m⁻² yr⁻¹ in evergreen broadleaf forest at 2500–2650 m. Additionally, the windward slope forests had a significantly higher litterfall Hg depositions at the same altitude because the larger precipitation promoted the greater litterfall biomass production. The one-year litter Hg decomposition showed that the Hg mass of litter in dry-hot valley shrub decreased by 29%, while in mixed conifer-broadleaf and evergreen broadleaf forests increased by 22–48%. The dynamics of Hg in decomposing litter was controlled by the temperature mediated litter decomposition rate and the additional adsorption of environmental Hg during decomposition. Overall, our study highlights the litterfall mediated atmospheric mercury inputs and sequestration increase with the montane elevation, thus driving a Hg enhanced accumulation in the high montane forest.
Afficher plus [+] Moins [-]An increase in precipitation exacerbates negative effects of nitrogen deposition on soil cations and soil microbial communities in a temperate forest Texte intégral
2018
Shi, Leilei | Zhang, Hongzhi | Liu, Tao | Mao, Peng | Zhang, Weixin | Shao, Yuanhu | Fu, Shenglei
World soils are subjected to a number of anthropogenic global change factors. Although many previous studies contributed to understand how single global change factors affect soil properties, there have been few studies aimed at understanding how two naturally co-occurring global change drivers, nitrogen (N) deposition and increased precipitation, affect critical soil properties. In addition, most atmospheric N deposition and precipitation increase studies have been simulated by directly adding N solution or water to the forest floor, and thus largely neglect some key canopy processes in natural conditions. These previous studies, therefore, may not realistically simulate natural atmospheric N deposition and precipitation increase in forest ecosystems. In a field experiment, we used novel canopy applications to investigate the effects of N deposition, increased precipitation, and their combination on soil chemical properties and the microbial community in a temperate deciduous forest. We found that both soil chemistry and microorganisms were sensitive to these global change factors, especially when they were simultaneously applied. These effects were evident within 2 years of treatment initiation. Canopy N deposition immediately accelerated soil acidification, base cation depletion, and toxic metal accumulation. Although increased precipitation only promoted base cation leaching, this exacerbated the effects of N deposition. Increased precipitation decreased soil fungal biomass, possible due to wetting/re-drying stress or to the depletion of Na. When N deposition and increased precipitation occurred together, soil gram-negative bacteria decreased significantly, and the community structure of soil bacteria was altered. The reduction of gram-negative bacterial biomass was closely linked to the accumulation of the toxic metals Al and Fe. These results suggested that short-term responses in soil cations following N deposition and increased precipitation could change microbial biomass and community structure.
Afficher plus [+] Moins [-]Effects of local-scale decontamination in a secondary forest contaminated after the Fukushima nuclear power plant accident Texte intégral
2017
Ayabe, Yoshiko | Hijii, Naoki | Takenaka, Chisato
We investigated whether local-scale decontamination (removal of the litter layer, superficial soil layer, and understory) in a secondary forest contaminated by the Fukushima nuclear power plant accident reduced 137Cs contamination of the soil and litter. We also measured 137Cs concentrations in plants and in the web-building spider Nephila clavata (Nephilidae: Arachnida), as an indicator species, to examine 137Cs contamination in arthropods. One month after decontamination, the total 137Cs contamination (soil + litter) was reduced by 20% (100 kBq·m−2) relative to that in an adjacent untreated (i.e., contaminated) area, which was however not statistically significant. Four months after decontamination, 137Cs in the decontaminated area had increased to a level similar to those in the untreated area, and the air radiation dose in the decontaminated area was about 2.1 μSv·h−1, significantly higher than that in the untreated area (1.9 μSv·h−1). This may have been attributed to a torrential rain event. Although no statistically significant reduction was observed, most spiders had a lower 137Cs contamination than that before the decontamination. This implied that the decontamination may have reduced 137Cs transfer from soil via litter to N. clavata through the detrital food chains, but may not have reduced the amount of 137Cs transfer through grazing food chains because the concentration of 137Cs in living tree leaves was not reduced by the decontamination. In autumn, about 2 kBq·m−2 of 137Cs was supplied from foliage to the ground by litterfall. The results suggested that removal of the litter and superficial soil layers in a contaminated forest may be ineffective. The present study suggests that the local-scale decontamination in a secondary forest had no effect on the reduction of 137Cs contamination in the treated area.
Afficher plus [+] Moins [-]Using foliar and forest floor mercury concentrations to assess spatial patterns of mercury deposition Texte intégral
2015
Blackwell, Bradley D. | Driscoll, Charles T.
We evaluated spatial patterns of mercury (Hg) deposition through analysis of foliage and forest floor samples from 45 sites across Adirondack Park, NY. Species-specific differences in foliar Hg were evident with the lowest concentrations found in first-year conifer needles and highest concentrations found in black cherry (Prunus serotina). For foliage and forest floor samples, latitude and longitude were negatively correlated with Hg concentrations, likely because of proximity to emission sources, while elevation was positively correlated with Hg concentrations. Elemental analysis showed moderately strong, positive correlations between Hg and nitrogen concentrations. The spatial pattern of Hg deposition across the Adirondacks is similar to patterns of other contaminants that originate largely from combustion sources such as nitrogen and sulfur. The results of this study suggest foliage can be used to assess spatial patterns of Hg deposition in small regions or areas of varied topography where current Hg deposition models are too coarse to predict deposition accurately.
Afficher plus [+] Moins [-]Gaseous mercury emissions from unsterilized and sterilized soils: The effect of temperature and UV radiation Texte intégral
2009
Choi, Hyun-Deok | Holsen, Thomas M.
Mercury (Hg) emissions from the soils taken from two different sites (deciduous and coniferous forests) in the Adirondacks were measured in outdoor and laboratory experiments. Some of the soil samples were irradiated to eliminate biological activity. The result from the outdoor measurements with different soils suggests the Hg emission from the soils is partly limited by fallen leaves covering the soils which helps maintain relatively high soil moisture and limits the amount of heat and solar radiation reaching the soil surface. In laboratory experiments exposure to UV-A (365 nm) had no significant effect on the Hg emissions while the Hg emissions increased dramatically during exposure to UV-B (302 nm) light suggesting UV-B directly reduced soil-associated Hg. Overall these results indicate that for these soils biotic processes have a relatively constant and smaller influence on the Hg emission from the soil than the more variable abiotic processes. Hg emission measurements from soils indicate that abiotic processes were more important than biotic processes in reducing Hg and controlling emissions.
Afficher plus [+] Moins [-]Root uptake of lead by Norway spruce grown on 210Pb spiked soils Texte intégral
2009
Hovmand, M.F. | Nielsen, S.P. | Johnsen, I.
The root uptake of lead (Pb) by trees and the transfer of Pb by leaf litter deposition to the forest floor were investigated through a pot experiment with Norway spruce. Natural Pb and radio isotopic lead (210Pb) were determined in needles and twigs and in the pot soil spiked with 210Pb. Calculations of the specific activity in plant material and in the supporting pot soil showed that less than 2% of the Pb content of needles and twigs originates from root uptake and approximately 98% are deposited from the atmosphere. Atmospheric Pb has declined by a factor of 7 from 1980 to 2007 but is still a major pathway of Pb to vegetation and topsoils. The conclusion from the experiment is that the internal circulation of Pb through root uptake, translocation and litterfall, gives an insignificant input of Pb to the forest floor compared to atmospheric deposition.
Afficher plus [+] Moins [-]UV-irradiation and leaching in water reduce the toxicity of imidacloprid-contaminated leaves to the aquatic leaf-shredding amphipod Gammarus fossarum Texte intégral
2018
Englert, Dominic | Zubrod, Jochen P. | Neubauer, Christoph | Schulz, Ralf | Bundschuh, Mirco
Systemic neonicotinoid insecticides such as imidacloprid are increasingly applied against insect pest infestations on forest trees. However, leaves falling from treated trees may reach nearby surface waters and potentially represent a neonicotinoid exposure source for aquatic invertebrates. Given imidacloprid's susceptibility towards photolysis and high water solubility, it was hypothesized that the leaves' toxicity might be modulated by UV-irradiation during decay on the forest floor, or by leaching and re-mobilization of the insecticide from leaves within the aquatic ecosystem. To test these hypotheses, the amphipod shredder Gammarus fossarum was fed (over 7 d; n = 30) with imidacloprid-contaminated black alder (Alnus glutinosa) leaves that had either been pre-treated (i.e., leached) in water for up to 7 d or UV-irradiated for 1 d (at intensities relevant during autumn in Central Europe) followed by a leaching duration of 1 d. Gammarids' feeding rate, serving as sublethal response variable, was reduced by up to 80% when consuming non-pretreated imidacloprid-contaminated leaves compared to imidacloprid-free leaves. Moreover, both leaching of imidacloprid from leaves (for 7 d) as well as UV-irradiation reduced the leaves' imidacloprid load (by 46 and 90%) thereby mitigating the effects on gammarids' feeding rate to levels comparable to the respective imidacloprid-free controls. Therefore, natural processes, such as UV-irradiation and re-mobilization of foliar insecticide residues in water, might be considered when evaluating the risks systemic insecticide applications in forests might pose for aquatic organisms in nearby streams.
Afficher plus [+] Moins [-]Linking chemical elements in forest floor humus (Oₕ-horizon) in the Czech Republic to contamination sources Texte intégral
2011
Sucharova, Julie | Suchara, Ivan | Hola, Marie | Reimann, Clemens | Boyd, Rognvald | Filzmoser, Peter | Englmaier, Peter
While terrestrial moss and other plants are frequently used for environmental mapping and monitoring projects, data on the regional geochemistry of humus are scarce. Humus, however, has a much larger life span than any plant material. It can be seen as the “environmental memory” of an area for at least the last 60–100 years. Here concentrations of 39 elements determined by ICP-MS and ICP AES, pH and ash content are presented for 259 samples of forest floor humus collected at an average sample density of 1 site/300km² in the Czech Republic. The scale of anomalies linked to known contamination sources (e.g., lignite mining and burning, metallurgical industry, coal fired power plants, metal smelters) is documented and discussed versus natural processes influencing humus quality. Most maps indicate a local impact from individual contamination sources: often more detailed sampling than used here would be needed to differentiate between likely sources.
Afficher plus [+] Moins [-]