Affiner votre recherche
Résultats 1-10 de 119
Recyclable plastics as substrata for settlement and growth of bryozoans Bugula neritina and barnacles Amphibalanus amphitrite
2016
Li, Heng-Xiang | Orihuela, Beatriz | Zhu, Mei | Rittschof, Daniel
Plastics are common and pervasive anthropogenic debris in marine environments. Floating plastics provide opportunities to alter the abundance, distribution and invasion potential of sessile organisms that colonize them. We selected plastics from seven recycle categories and quantified settlement of (i) bryozoans Bugula neritina (Linnaeus, 1758) in the lab and in the field, and of (ii) barnacles Amphibalanus (= Balanus) amphitrite (Darwin, 1854) in the field. In the laboratory we cultured barnacles on the plastics for 8 weeks and quantified growth, mortality, and breaking strength of the side plates. In the field all recyclable plastics were settlement substrata for bryozoans and barnacles. Settlement depended on the type of plastic. Fewer barnacles settled on plastic surfaces compared to glass. In the lab and in the field, bryozoan settlement was higher on plastics than on glass. In static laboratory rearing, barnacles growing on plastics were initially significantly smaller than on glass. This suggested juvenile barnacles were adversely impacted by materials leaching from the plastics. Barnacle mortality was not significantly different between plastic and glass surfaces, but breaking strength of side plates of barnacles on polyvinyl chloride (PVC) and polycarbonate (PC) were significantly lower than breakage strength on glass. Plastics impact marine ecosystems directly by providing new surfaces for colonization with fouling organisms and by contaminants shown previously to leach out of plastics and impact biological processes.
Afficher plus [+] Moins [-]Contribution of a submerged membrane bioreactor in the treatment of synthetic effluent contaminated by Bisphenol-A: Mechanism of BPA removal and membrane fouling
2013
Seyhi, Brahima | Drogui, Patrick | Buelna, Gerardo | Azaïs, Antonin | Heran, Marc
A submerged membrane bioreactor has been operated at the laboratory scale for the treatment of a synthetic effluent containing Bisphenol-A (BPA). COD, NH4–N, PO4–P and BPA were eliminated respectively, at 99%, 99%, 61% and 99%. The increase of volumetric loading rate from 0 to 21.6 g/m3/d did not affect the performance of the MBR system. However, the removal rate decreased rapidly when the BPA loading rate increased above 21.6 g/m3/d. The adsorption process of BPA on the biomass was very well described by Freundlich and Langmuir isotherms. Subsequently, biodegradation of BPA occurred and followed the first order kinetic reaction, with a constant rate of 1.13 ± 0.22 h−1. During treatment, membrane fouling was reversible in the first 84 h of filtration, and then became irreversible. The membrane fouling was mainly due to the accumulation of suspended solid and development of biofilm on the membrane surface.
Afficher plus [+] Moins [-]Environmental concentrations of antifouling paint particles are toxic to sediment-dwelling invertebrates
2021
Muller-Karanassos, Christina | Arundel, William | Lindeque, Penelope K. | Vance, Thomas | Turner, Andrew | Cole, Matthew
Antifouling paint particles (APPs) and associated metals have been identified in sediments around boatyards and marinas globally, but the effects of APPs on benthic organisms are largely unknown. Sub-lethal endpoints were measured following laboratory exposures of the harbour ragworm (Hediste diversicolor) and the common cockle (Cerastoderma edule) to environmentally relevant concentrations of biocidal (‘modern’ and ‘historic’) and biocide-free (‘silicone’) APPs added to clean estuarine sediment. Further, the 5-day median lethal concentrations (LC₅₀) and effects concentrations (EC₅₀) for modern biocidal APPs were calculated. For ragworms, significant decreases in weight (15.7%; p < 0.01) and feeding rate (10.2%; p < 0.05) were observed in the modern biocidal treatment; burrowing behaviour was also reduced by 29% in this treatment, but was not significant. For cockles, the modern biocidal treatment led to 100% mortality of all replicates before endpoints were measured. In cockles, there was elevated levels of metallothionein-like protein (MTLP) in response to both modern and historic biocidal treatments. Ragworms had a higher tolerance to modern APPs (5-day LC₅₀:19.9 APP g L⁻¹; EC₅₀: 14.6 g L⁻¹) compared to cockles (5-day LC₅₀: 2.3 g L⁻¹ and EC₅₀: 1.4 g L⁻¹). The results of this study indicate that modern biocidal APPs, containing high Cu concentrations, have the potential to adversely affect the health of benthic organisms at environmentally relevant concentrations. The findings highlight the need for stricter regulations on the disposal of APP waste originating from boatyards, marinas and abandoned boats.
Afficher plus [+] Moins [-]Weathering and persistence of plastic in the marine environment: Lessons from LEGO
2020
Turner, Andrew | Arnold, Rob | Williams, Tracey
The residence times of plastics in the oceans are unknown, largely because of the durability of the material and the relatively short (decadal) period of time over which plastic products have been manufactured. In this study, classic LEGO bricks constructed of acrylonitrile butadiene styrene (ABS) and washed up on beaches of southwest England have been subjected to X-ray fluorescence (XRF) analysis and the spectra and any other identifiers matched with unweathered blocks stored in collections or sets of known history. Relative to unweathered equivalents, weathered blocks exhibit varying degrees of yellowing, fracturing and fouling, and are of lower mass, average stud height and mechanical strength. These effects are attributed to photo-oxidative degradation and the actions of physical stress and abrasion while exposed to the marine environment. Infrared spectra indicate that the polymer remains largely intact on weathering but with photo-degradation of the polybutadiene phase of ABS, while quantification of XRF spectra reveals that pigments like cadmium sulphoselenide become more heterogeneously distributed in the matrix when in the environment. Using measured mass loss of paired (weathered versus unweathered) equivalents and the age of blocks obtained from storage we estimate residence times of between about 100 and 1300 years for this type and thickness of plastic, with variations reflecting differences in precise additive composition and modes of weathering.
Afficher plus [+] Moins [-]Comparative contributions of copper nanoparticles and ions to copper bioaccumulation and toxicity in barnacle larvae
2019
Yang, Li | Wang, Wen-Xiong
Cu nanoparticles (CuNPs) have been widely used in numerous products, and may become a potential threat to marine organisms, but their behavior in the marine environments and potential toxicity to marine organisms remain little known. In the present study, we investigated the behavior of CuNPs in seawater, as well as the toxicity and bioaccumulation of CuNPs and copper sulfate (CuSO4) in barnacle larvae (Balanus amphitrite), a dominant fouling invertebrate in marine environment. CuNPs tended to aggregate in natural seawater and released Cu ion rapidly into seawater. The aggregation and release were especially higher at a lower concentration of CuNPs, e.g., 94–96% of CuNPs were released as Cu ions at 20 μg/L after 24 h. The larger size of CuNPs (40 nm) tended to display a higher solubility than the 20 nm CuNPs did. Humic acids enhanced the aggregation and inhibited the dissolution of CuNPs, and had a protective effect on the survival of nauplii II at higher Cu concentrations (100–200 μg/L). Comparison of the lethal concentrations showed that CuNPs were generally less toxic to the two stages of barnacle larvae (nauplii II and VI) than the Cu ions. The calculated 48-h LC50 values for nauplii II were 189.5 μg/L, 123.2 μg/L, and 89.8 μg/L for 20 nm CuNPs, 40 nm CuNPs, and CuSO4, respectively. However, the lethal concentrations of Cu bioaccumulation in the barnacle larvae were comparable between CuNPs and Cu ions when expressed by the actual tissue Cu bioaccumulation. Barnacle larval settlement decreased with an increase of Cu concentrations of both CuNPs and CuSO4, and was significantly inhibited at 100 μg/L CuSO4 and 150 μg/L CuNPs. Our results indicated that the toxicity of CuNPs could not be solely explained by the released Cu ions, and both CuNPs and the released Cu ion contributed to their toxicity and bioaccumulation in barnacle larvae.
Afficher plus [+] Moins [-]The use of nanoparticles in polymeric and ceramic membrane structures: Review of manufacturing procedures and performance improvement for water treatment
2010
Membrane separations are powerful tools for various applications, including wastewater treatment and the removal of contaminants from drinking water. The performance of membranes is mainly limited by material properties. Recently, successful attempts have been made to add nanoparticles or nanotubes to polymers in membrane synthesis, with particle sizes ranging from 4 nm up to 100 nm. Ceramic membranes have been fabricated with catalytic nanoparticles for synergistic effects on the membrane performance. Breakthrough effects that have been reported in the field of water and wastewater treatment include fouling mitigation, improvement of permeate quality and flux enhancement. Nanomaterials that have been used include titania, alumina, silica, silver and many others. This paper reviews the role of engineered nanomaterials in (pressure driven) membrane technology for water treatment, to be applied in drinking water production and wastewater recycling. Benefits and drawbacks are described, which should be taken into account in further studies on potential risks related to release of nanoparticles into the environment.
Afficher plus [+] Moins [-]Toxicity of engineered micro- and nanomaterials with antifouling properties to the brine shrimp Artemia salina and embryonic stages of the sea urchin Paracentrotus lividus
2019
Gutner-Hoch, Eldad | Martins, Roberto Borges | Maia, Frederico | Oliveira, Tania | Shpigel, Muki | Weis, Michal | Tedim, João | Benayahu, Yehuda
Antifouling booster biocides are chemicals used in protective paints to tackle the adhesion of fouling organisms to maritime artificial structures. However, they are also known to exert toxic effects on non-target organisms. Recent research developments have highlighted the potential use of engineered micro/nanomaterials (EMNMs) as carriers of antifouling booster biocides in order to control their release and to reduce the harmful effects on living biota. In the present study, we sought to assess the toxicity of two commercially-available booster biocides: (zinc pyrithione (ZnPT) and copper pyrithione (CuPT)); three unloaded engineered micro/nanomaterials (EMNMs); layered double hydroxides (LDH), silica nanocapsules (SiNC), polyurea microcapsules (PU); , and six novel EMNMs (loaded with each of the two biocides). The exposure tests were conducted on the larval stage (nauplii) of the brine shrimp Artemia salina and on two embryonic developmental stages of the European purple sea urchin Paracentrotus lividus. The findings indicate that the unloaded LDH and PU (i.e. both biocide-free EMNMs) have non/low toxic effects on both species. The unloaded SiNC, in contrast, exerted a mild toxic effect on the A. salina nauplii and P. lividus embryos. The free biocides presented different toxicity values, with ZnPT being more toxic than CuPT in the P. lividus assays. LDH-based pyrithiones demonstrated lower toxicity compared to the free forms of the state-of-the-art compounds, and constitute good candidates in terms of their antifouling efficacy.
Afficher plus [+] Moins [-]Occurrence and partitioning of third-generation antifouling biocides in sediments and porewaters from Brazilian northeast
2019
Viana, José Lucas Martins | dos Santos, Sara Raiane Viana | dos Santos Franco, Teresa Cristina Rodrigues | Almeida, Márcio Aurélio Pinheiro
Fouling organisms fix and grow on submerged surfaces and may cause several economic losses. Thus, antifouling biocides have been introduced in antifouling paints in order to avoid this phenomenon. However, their widespread use became a global problem, since these substances can be highly toxic to non-target organisms, mainly in high boat traffic areas. The occurrence and environmental behavior of antifouling biocides are especially unknown in areas of ecological relevance, as Amazonian and pre-Amazonian regions. Thus, the aim of this work was to evaluate, for the first time, levels and the partitioning behavior of the antifouling organic biocides irgarol, diuron and also stable degradation products of dichlofluanid and diuron (DMSA and DCPMU, respectively) in sediments and porewaters from a high boat traffic area located in the Northeast of Brazil. Our results showed high concentrations of irgarol and diuron in sediments, and their contamination patterns suggested that misuse and discard of antifouling residues contribute for a serious risk in this environment. Additionally, DCPMU and DMSA were detected for the first time in porewaters of the Brazilian coast. This work represents one of the few registers of contamination, especially by antifouling substances, in Amazonian areas, despite their environmental relevance.
Afficher plus [+] Moins [-]The environmental contaminant tributyltin leads to abnormalities in different levels of the hypothalamus-pituitary-thyroid axis in female rats
2018
Andrade, Marcelle Novaes | Santos-Silva, Ana Paula | Rodrigues-Pereira, Paula | Paiva-Melo, Francisca Diana | de Lima Junior, Niedson Correa | Teixeira, Mariana Pires | Soares, Paula | Dias, Glaecir Roseni Munstock | Graceli, Jones Bernardes | de Carvalho, Denise Pires | Ferreira, Andrea Claudia Freitas | Miranda-Alves, Leandro
Tributyltin is a biocide used in nautical paints, aiming to reduce fouling of barnacles in ships. Despite the fact that many effects of TBT on marine species are known, studies in mammals have been limited, especially those evaluating its effect on the function of the hypothalamus-pituitary-thyroid (HPT) axis. The aim of this study was to investigate the effects of subchronic exposure to TBT on the HPT axis in female rats. Female Wistar rats received vehicle, TBT 200 ng kg−1 BW d−1 or 1000 ng kg−1 BW d−1 orally by gavage for 40 d. Hypothalamus, pituitary, thyroid, liver and blood samples were collected. TBT200 and TBT1000 thyroids showed vacuolated follicular cells, with follicular hypertrophy and hyperplasia. An increase in epithelial height and a decrease in the thyroid follicle and colloid area were observed in TBT1000 rats. Moreover, an increase in the epithelium/colloid area ratio was observed in both TBT groups. Lower TRH mRNA expression was observed in the hypothalami of TBT200 and TBT1000 rats. An increase in Dio1 mRNA levels was observed in the hypothalamus and thyroid in TBT1000 rats only. TSH serum levels were increased in TBT200 rats. In TBT1000 rats, there was a decrease in total T4 serum levels compared to control rats, whereas T3 serum levels did not show significant alterations. We conclude that TBT exposure can promote critical abnormalities in the HPT axis, including changes in TRH mRNA expression and serum TSH and T4 levels, in addition to affecting thyroid morphology. These findings demonstrate that TBT disrupts the HPT axis. Additionally, the changes found in thyroid hormones suggest that TBT may interfere with the peripheral metabolism of these hormones, an idea corroborated by the observed changes in Dio1 mRNA levels. Therefore, TBT exposition might interfere not only with the thyroid axis but also with thyroid hormone metabolism.
Afficher plus [+] Moins [-]Assessment of flame retardants in river water using a ceramic dosimeter passive sampler
2013
Cristale, Joyce | Katsoyiannis, Athanasios | Chen, Chang'er | Jones, K. C. (Kevin C.) | Lacorte, Silvia
Novel brominated (BFRs) and organophosphorus (OPFRs) flame retardants were monitored in river water using the ceramic dosimeter passive sampling device with HLB (hydrophilic–lipophilic balance) as sorbent. Laboratory calibrations were performed to determine sampling rates for each compound using the Archie's law exponent. The passive sampling device was used to determine the presence of 6 BFRs in the River Aire (United Kingdom), selected according to their ubiquitous presence in the River Aire. Passive sampling integrated river water concentrations ranged from 0.010 to 5.6 μg L−1 for all OPFRs, while BFRs were not detected with this specific passive sampler configuration. Decreased sampling rates were evidenced after 3 weeks of deployment, probably due to fouling. Good agreement between integrated and snapshot water concentrations was obtained, indicating the efficiency of the passive sampler for the monitoring of OPFRs in river water.
Afficher plus [+] Moins [-]