Affiner votre recherche
Résultats 1-3 de 3
Effect of soil sulfamethoxazole on strawberry (Fragaria ananassa): Growth, health risks and silicon mitigation
2021
Lv, Yao | Li, Yanyan | Liu, Xiaohui | Xu, Kun
The negative impact of antibiotic pollution on the agricultural system and human health is a hot issue in the world. However, little information is available on the antibiotics toxicity mechanism and the role of silicon (Si) to alleviate the antibiotics toxicity. In this study, strawberry (Fragaria ananassa) showed excitatory response to low-dose SMZ (1 mg L⁻¹), but strawberry root and photosynthetic efficiency were damaged under high level. When SMZ level exceeded 10 mg L⁻¹, H₂0₂, O₂⁻, MDA and relative conductivity increased, while SOD and CAT activities first increased and then decreased. SMZ accumulated more in roots and fruits, but less in stems, and the accumulation increased with the increase of SMZ-dose. Under 1 mg L⁻¹ SMZ, the SMZ accumulation in fruits was 110.54 μg kg⁻¹, which exceeded the maximum residue limit. SMZ can induce the expression of sul1, sul2 and intI1, and intI1 had the highest abundance. Exogenous application of Si alleviated the toxicity of SMZ, which is mainly related to the degradation of SMZ in soil and the reduction of SMZ absorption by strawberry. In addition, Si relieved root damage, promoted the increase of photosynthetic efficiency, and improved the antioxidant system to resist SMZ toxicity.
Afficher plus [+] Moins [-]Alleviation of the effect of salinity on growth and yield of strawberry by foliar spray of selenium-nanoparticles
2019
Zahedi, Seyed Morteza | Abdelrahman, Mostafa | Hosseini, Marjan Sadat | Hoveizeh, Narjes Fahadi | Tran, Lam-son Phan
The present study investigated the beneficial role of selenium-nanoparticles (Se-NPs) in mitigating the adverse effects of soil-salinity on growth and yield of strawberry (Fragaria × ananassa Duch.) plants by maneuvering physiological and biochemical mechanisms. The foliar spray of Se-NPs (10 and 20 mg L⁻¹) improved the growth and yield parameters of strawberry plants grown on non-saline and different saline soils (0, 25, 50 and 75 mM NaCl), which was attributed to their ability to protect photosynthetic pigments. Se-NPs-treated strawberry plants exhibited higher levels of key osmolytes, including total soluble carbohydrates and free proline, compared with untreated plants under saline conditions. Foliar application of Se-NPs improved salinity tolerance in strawberry by reducing stress-induced lipid peroxidation and H₂O₂ content through enhancing activities of antioxidant enzymes like superoxide dismutase and peroxidase. Additionally, Se-NPs-treated strawberry plants showed accumulation of indole-3-acetic acid and abscisic acid, the vital stress signaling molecules, which are involved in regulating different morphological, physiological and molecular responses of plants to salinity. Moreover, the enhanced levels of organic acids (e.g., malic, citric and succinic acids) and sugars (e.g., glucose, fructose and sucrose) in the fruits of Se-NPs-treated strawberry plants under saline conditions indicated the positive impacts of Se-NPs on the improvement of fruit quality and nutritional values. Our results collectively demonstrate the definite roles of Se-NPs in management of soil salinity-induced adverse effects on not only strawberry plants but also other crops.
Afficher plus [+] Moins [-]Nitrate leaching and strawberry production as affected by drip irrigation
1993
Serrano, L. | Carbonell, X. | Marfa, O. | Candela, L. | Guimera, J. (Institut de Recerca i Technologia Agroalimentaries, Centre de Cabrils, Barcelona (Spain))