Affiner votre recherche
Résultats 1-10 de 218
Assessing the influence of sewage sludge and derived-biochar in immobilization and transformation of heavy metals in polluted soil: Impact on intracellular free radical formation in maize
2022
Rashid, Muhammad Saqib | Liu, Guijian | Yousaf, Balal | Hamid, Yasir | Rehman, Abdul | Munir, Mehr Ahmed Mujtaba | Arif, Muhammad | Ahmed, Rafay | Song, Yu
As one of the most common ways to get rid of municipal waste, landfill leachate, waste with complicated compositions and high levels of contaminants, has become a significant threat to the world's environment. Here, the impact of sewage sludge (SS) and derived-biochar (SSB) amendments on the immobilization and potential mobility of heavy metals in a contaminated soil-plant system was investigated. The sequential fractionation findings showed that using SS-2%, SSB-2%, and SSBC-1% reduced the potential mobility of heavy metals while increasing the residual fraction in polluted soils. The translocation and bioconcentration factors showed that heavy metals were slightly transferred into shoots from roots and lowered accumulation in roots from contaminated soils. Fourier transform infrared (FTIR) and X-ray photoelectron spectrum (XPS) comprehensive characterization results indicated the significant role of applied amendments for heavy metals transformation from the exchangeable-soluble fractions to the least available form by lowering their mobility to confirm the adsorption-based complexes, which results in the surface adsorption of heavy metals with functional groups. The electron paramagnetic resonance (EPR) results indicated the dominance of reactive oxygen species (ROS) in the intracellular formation of hydroxyl radicals (•OH) in maize plant roots and shoots. ROS (•OH) generation plays a critical influence in the interaction between the physiological processes of plants and heavy metals. Moreover, all the amendments increased maize growth and biomass production. Our study suggests that alone and combined application of SS and SSB have great potential to remediate heavy metals contaminated soil for environmental sustainability.
Afficher plus [+] Moins [-]Photochemical degradation kinetics and mechanism of short-chain chlorinated paraffins in aqueous solution: A case of 1-chlorodecane
2019
Zhang, Wanlan | Gao, Yanpeng | Qin, Yaxin | Wang, Mei | Wu, Junji | Li, Guiying | An, Taicheng
Short chain chlorinated paraffins (SCCPs) have attracted worldwide attention in recent years, due to their high production volume, persistent, bioaccumulative and toxic properties. In this study, 1-chlorodecane (CD) was selected as a model of SCCPs to explore its photochemical degradation behavior under UV irradiation. The results found that CD could be completely photochemical degradation within 120 min, and the •OH was found to be the main reactive species from both quenching experiments and electron paramagnetic resonance (EPR) results. However, the contribution of triple excited state of CD (³CD*) was still nonnegligible from the results with the absorption peak at 480 nm obtained by laser flash photolysis. Based on the identified intermediates as well as the data from theoretical chemical calculation, the detailed photochemical degradation mechanism of CD was tentatively proposed that CD firstly was excited and photo-ionized under UV irradiation, and the released Cl• in water could result in generating •OH. Then •OH initiates CD degradation mainly through the H-abstraction pathway, leading to the generation of several dehydrogenation radicals, which further generated alcohols or long chain intermediates through radical-radical reactions. The results will provide a comprehensive understanding of the degradation mechanism and environmental fates of SCCPs in water under UV irradiation.
Afficher plus [+] Moins [-]Synergetic mediation of reduced graphene oxide and Cu(II) on the oxidation of 2-naphthol in water
2019
Pei, Zhiguo | Ma, Jie | Li, Lingyun | Xie, Jieli | Wang, Lingqing | Wen, Bei | Zhang, Shuzhen | Xing, Baoshan
Reduced graphene oxide (rGO) is one of the most widely used carbon nanomaterials. When it is released into the environment, rGO can markedly affect the transformation of many pollutants, and change their fate and risk. In this work, the synergetic effects of rGO and Cu(II) on the oxidation of 2-naphthol were examined in water in the dark. It was found that the coexistence of rGO and Cu(II) significantly promoted the oxidation of 2-naphthol. Corresponding products were identified as the coupling oligomers of 2-naphthol (dimer, trimer and tetramer) and hydroxylated compounds (OH-2-naphthol, OH-dimer, di–OH–dimer and naphthoquinone derivatives). In the oxidation reaction, rGO played dual roles, i.e. adsorbent and electron-transfer mediator. rGO firstly adsorbed Cu(II) and 2-naphthol on its surface, and then transferred electrons from 2-naphthol to Cu(II) to yield 2-naphthol radicals and Cu(I). 2-Naphthol radicals coupled to each other to form different oligomers of 2-naphthol. Cu(I) was re-oxidized back to Cu(II) by dissolved oxygen, which sustained the continuous oxidation of 2-naphthol. During the autoxidation of Cu(I), reactive oxygen species were generated, which further reacted with 2-naphthol to form hydroxylated products. These findings provide new insights into the risk assessment of rGO and 2-naphthol in aquatic environments.
Afficher plus [+] Moins [-]Peroxymonosulfate catalyzed by rGO assisted CoFe2O4 catalyst for removing Hg0 from flue gas in heterogeneous system
2019
Zhao, Yi | Nie, Guoxin | Ma, Xiaoying | Xu, Peiyao | Zhao, Xiaochu
The cobalt ferrite-reduced oxidized graphene (CoFe2O4/rGO) catalyst was synthesized by hydrothermal method and characterized by Powder X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), Scanning electron microscope (SEM), Brunauere Emmette Teller (BET) and Hysteresis loop. For developing a new method of removing elemental mercury (Hg0) from flue gas, the effects of catalyst dosage, PMS concentration, solution pH and reaction temperature on the removal efficiency were investigated experimentally by using peroxymonosulfate (PMS) catalyzed by CoFe2O4/rGO at a self-made bubbling reactor. The average removal efficiency of Hg0 in a 30-min period reached 95.56%, when CoFe2O4/rGO dosage was 0.288 g/L, PMS concentration was 3.5 mmol/L, solution pH was 5.5 and reaction temperature was 55 °C. Meanwhile, based on the free radical quenching experiments, in which, ethyl alcohol and tert butyl alcohol were used as quenchers to prove indirectly the presence of •OH and SO4•−, the characterizations of catalysts and reaction products, and the existing results from other scholars. The reaction mechanism was proposed.
Afficher plus [+] Moins [-]Dispersion-box modeling investigation of the influences of gasoline, diesel, M85 and E85 vehicle exhaust emission on photochemistry
2019
Gabay, Maor | Tas, Eran
Alternative transportation fuels (ATFs) can reduce air pollution. However, the influence of conventional fuels—diesel and gasoline, and particularly ATFs on photochemical air pollution is not well-characterized, limiting assessments of ATFs and air quality. This is mainly due to frequent use of lumped chemical mechanisms by related atmospheric modeling. Here we hypothesized that applying a chemical mechanism that is specifically developed according to both emission fractions and photochemical ozone creation potential of volatile organic compounds (VOCs) is key to gaining reliable insights into the impact of transportation fuels on photochemistry. We used a heterogeneous chemical mechanism with 927 reactions and relatively detailed emission inventories to specifically meet the requirements for reliable simulation of the effect of exhaust emissions from vehicles fueled by selected model fuels—diesel, gasoline, and mixtures of 15% gasoline with 85% ethanol (E85) or 85% methanol (M85)—on photochemistry. These dispersion-box model simulations revealed a strong influence of atmospheric background balance between VOCs and nitrogen oxides (NOX = [NO] + [NO2]) on the impact of exhaust emissions on photochemistry, with higher tendency toward ozone (O3) formation or destruction for more VOC-limited or NOX-limited conditions, respectively. Accordingly, higher [NOX]/[VOC] exhaust emission, such as from diesel and M85, resulted in lower O3, not only locally but also downwind of the emission. This offers a new perspective and measure for transportation fuel assessment. Rapid conversion of O3 to hydroxyl and hydroperoxyl radicals downwind of the exhaust emission indicates the importance of simulating the impact of road transportation on photochemistry at high spatial and temporal resolution. Peroxyacetyl nitrate formation was more sensitive to VOC emission under VOC-limited conditions than to NOX emission under NOX-limited conditions. Secondary formaldehyde dominated over primary emitted formaldehyde several minutes after emission. These findings should be verified using a 3D modeling study under varying meteorological conditions.
Afficher plus [+] Moins [-]Theoretical study on gas-phase reactions of nitrate radicals with methoxyphenols: Mechanism, kinetic and toxicity assessment
2018
Wei, Bo | Sun, Jianfei | Mei, Qiong | An, Zexiu | Wang, Xueyu | He, Maoxia
Creosol and 4-ethylguaiacol are two important methoxyphenols, lignin pyrolysis products, which are discharge into the atmosphere in large quantities. In this work, theoretical calculations of the reaction mechanism towards the two compounds with NO₃ radicals was performed using DFT method. The rate constants and toxicity assessment were also investigated. The atmospheric lifetime for creosol and 4-ethylguaiacol were 0.82 and 0.19 h, respectively. A new reaction pathway was proposed for the transformation of methoxyl into hydroxyl, which has not yet been clarified in previous studies. The toxicity of methoxyphenols and their degradation products is closely related to their hydrophobicity. Although most degradation products are less toxic, they also should be pay more attention, especially for nitro-substituents.A new reaction pathway was proposed for the transformation of methoxyl into hydroxyl. The toxicity is closely related to their hydrophobicity.
Afficher plus [+] Moins [-]Surface O3 photochemistry over the South China Sea: Application of a near-explicit chemical mechanism box model
2018
Wang, Yu | Guo, Hai | Zou, Shichun | Lyu, Xiaopu | Ling, Zhenhao | Cheng, Hairong | Zeren, Yangzong
A systematic field measurement was conducted at an island site (Wanshan Island, WSI) over the South China Sea (SCS) in autumn 2013. It was observed that mixing ratios of O₃ and its precursors (such as volatile organic compounds (VOCs), nitrogen oxides (NOₓ = NO + NO₂) and carbon monoxide (CO)) showed significant differences on non-episode days and episode days. Additional knowledge was gained when a photochemical box model incorporating the Master Chemical Mechanism (PBM-MCM) was applied to further investigate the differences/similarities of O₃ photochemistry between non-episode and episode days, in terms of O₃-precursor relationship, atmospheric photochemical reactivity and O₃ production. The simulation results revealed that, from non-O₃ episode days to episode days, 1) O₃ production changed from both VOC and NOₓ-limited (transition regime) to VOC-limited; 2) OH radicals increased and photochemical reaction cycling processes accelerated; and 3) both O₃ production and destruction rates increased significantly, resulting in an elevated net O₃ production over the SCS. The findings indicate the complexity of O₃ pollution over the SCS.
Afficher plus [+] Moins [-]Mechanistic insight into degradation of endocrine disrupting chemical by hydroxyl radical: An experimental and theoretical approach
2017
Xiao, Ruiyang | Gao, Lingwei | Wei, Zongsu | Spinney, Richard | Luo, Shuang | Wang, Donghong | Dionysiou, Dionysios D. | Tang, Chong–Jian | Yang, Weichun
Advanced oxidation processes (AOPs) based on formation of free radicals at ambient temperature and pressure are effective for treating endocrine disrupting chemicals (EDCs) in waters. In this study, we systematically investigated the degradation kinetics of bisphenol A (BPA), a representative EDC by hydroxyl radical (OH) with a combination of experimental and theoretical approaches. The second–order rate constant (k) of BPA with OH was experimentally determined to be 7.2 ± 0.34 × 109 M−1 s−1 at pH 7.55. We also calculated the thermodynamic and kinetic behaviors for the bimolecular reactions by density functional theory (DFT) using the M05–2X method with 6–311++G** basis set and solvation model based on density (SMD). The results revealed that H–abstraction on the phenol group is the most favorable pathway for OH. The theoretical k value corrected by the Collins–Kimball approach was determined to be 1.03 × 1010 M−1 s−1, which is in reasonable agreement with the experimental observation. These results are of fundamental and practical importance in understanding the chemical interactions between OH and BPA, and aid further AOPs design in treating EDCs during wastewater treatment processes.
Afficher plus [+] Moins [-]The potential ecological risk of multiwall carbon nanotubes was modified by the radicals resulted from peroxidase-mediated tetrabromobisphenol A reactions
2017
Lu, Kun | Huang, Qingguo | Xia, Tian | Chang, Xiaofeng | Wang, Peng | Gao, Shixiang | Mao, Liang
Extensive studies have been conducted on the environmental degradation of multiwall carbon nanotubes (MWCNTs), but primarily focused on the extent and rate of MWCNTs mineralization. Few studies have explored possible structural changes that may occur to MWCNTs during natural or engineered processes. We systematically examined MWCNTs in oxidative coupling reactions in the presence of a common contaminant tetrabromobisphenol A (TBBPA). MWCNTs was modified by the radicals of TBBPA resulting from peroxidase-mediated coupling reaction. Interactions between TBBPA radicals and MWCNTs were definitely confirmed by analyzing the characteristic mass spectrometry response of bromine in TBBPA and the structures of MWCNTs. After reaction with TBBPA radicals for 60 min, the content of bromine contained in MWCNTs was 6.84(±0.12)%, a quantity equivalent to a 501.65(±2.19) mg loading of TBBPA per gram MWCNTs. Modified MWCNTs had better stability and smaller sizes than that of MWCNTs and TBBPA-adsorbed MWCNTs. Assessment using zebrafish embryos revealed that the modified MWCNTs passed through the chorion and entered the embryo inducing acute toxicity, while the MWCNTs/TBBPA-adsorbed MWCNTs was trapped by chorion. These findings indicated that MWCNTs was modified in peroxidase-mediated coupling reactions, and suggested that such modifications may have an influence on the ecological risks of MWCNTs.
Afficher plus [+] Moins [-]Synthesis of oxygen vacancy-enriched N/P co-doped CoFe2O4 for high-efficient degradation of organic pollutant: Mechanistic insight into radical and nonradical evolution
2021
Hu, Mingzhu | Zhu, Jinyi | Zhou, Wenjun
Oxygen vacancy-enriched N/P co-doped cobalt ferrite (NPCFO) was synthesized using ionic liquid as N and P sources, and then the catalytic performance and mechanism of NPCFO upon peroxymonosulfate (PMS) activation for the degradation of organic pollutants were investigated. The as-synthesized NPCFO-700 exhibited excellent catalytic performance in activating PMS, and the degradation rate constant of 4-chlorophenol (4-CP) increased with the increase of OV concentration in NPCFO-x. EPR analysis confirmed the existence of ·OH, SO₄·⁻, and ¹O₂ in the NPCFO-700/PMS system, in which OV could induce the generation of ¹O₂ by PMS adsorption and successive capture, and also served as electronic transfer medium to accelerate the redox cycle of M²⁺/M³⁺ (M denotes Co or Fe) for the generation of radical to synergistically degrade organic pollutants. In addition, the contribution of free radical and nonradical to 4-CP degradation was observed to be strongly dependent on solution pH, and SO₄·⁻ was the major ROS in 4-CP degradation under acid and alkaline condition, while ¹O₂ was involved in the degradation of 4-CP under neutral condition due its selective oxidation capacity, as evidenced by the fact that such organic pollutants with ionization potential (IP) below 9.0 eV were more easily attacked by ¹O₂. The present study provided a novel insight into the development of transition metal-based heterogeneous catalyst containing massive OV for high-efficient PMS activation and degradation of organic pollutants.
Afficher plus [+] Moins [-]