Affiner votre recherche
Résultats 1-10 de 14
Structural and biological trait responses of diatom assemblages to organic chemicals in outdoor flow-through mesocosms
2014
Bayona, Yannick | Roucaute, Marc | Cailleaud, K. | Lagadic, Laurent | Basseres, A. | Caquet, Thierry | Écologie et santé des écosystèmes (ESE) ; Institut National de la Recherche Agronomique (INRA)-AGROCAMPUS OUEST | Service environnement ; Pôle d'Etude et de Recherche de Lacq [Total] (PERL) | Serv ice environnement ; Pôle d'Etude et de Recherche de Lacq [Total] (PERL) | Service environnement ; TOTAL Pôle d'Etude et de Recherche de Lacq | Total S.A.
The sensitivity of diatom taxonomy and trait-based endpoints to chemicals has been poorly used so far in Environmental Risk Assessment. In this study, diatom assemblages in outdoor flow-through mesocosms were exposed to thiram (35 and 170 mu g/L), and a hydrocarbon emulsion (HE; 0.01, 0.4, 2 and 20 mg/L). The effects of exposure were assessed for 12 weeks, including 9 weeks post-treatment, using taxonomic structure and diversity, bioindication indices, biological traits, functional diversity indices, indicator classes and ecological guilds. For both chemicals, diversity increased after the treatment period, and responses of ecological traits were roughly identical with an abundance increase of motile taxa tolerant to organic pollution and decrease of low profile taxa. Bioindication indices were not affected. Traits provided a complementary approach to biomass measurements and taxonomic descriptors, leading to a more comprehensive overview of ecological changes due to organic chemicals, including short- and long-term effects on biofilm structure and functioning. (C) 2014 Elsevier Ltd. All rights reserved.
Afficher plus [+] Moins [-]The use of copper as plant protection product contributes to environmental contamination and resulting impacts on terrestrial and aquatic biodiversity and ecosystem functions
2024
Pesce, Stéphane | Mamy, Laure | Sanchez, Wilfried | Artigas, Joan | Bérard, Annette | Betoulle, Stéphane | Chaumot, Arnaud | Coutellec, Marie-Agnès | Crouzet, Olivier | Faburé, Juliette | Hedde, Mickael | Leboulanger, Christophe | Margoum, Christelle | Martin-Laurent, Fabrice | Morin, Soizic | Mougin, Christian | Munaron, Dominique | Nélieu, Sylvie | Pelosi, Céline | Leenhardt, Sophie | RiverLy - Fonctionnement des hydrosystèmes (RiverLy) ; Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE) | Ecologie fonctionnelle et écotoxicologie des agroécosystèmes (ECOSYS) ; AgroParisTech-Université Paris-Saclay-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE) | Institut Français de Recherche pour l'Exploitation de la Mer (IFREMER) | Laboratoire Microorganismes : Génome et Environnement (LMGE) ; Centre National de la Recherche Scientifique (CNRS)-Université Clermont Auvergne (UCA) | Environnement Méditerranéen et Modélisation des Agro-Hydrosystèmes (EMMAH) ; Avignon Université (AU)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE) | Stress Environnementaux et BIOsurveillance des milieux aquatiques (SEBIO) ; Institut National de l'Environnement Industriel et des Risques (INERIS)-Université de Reims Champagne-Ardenne (URCA)-Université Le Havre Normandie (ULH) ; Normandie Université (NU)-Normandie Université (NU)-SFR Condorcet ; Université de Reims Champagne-Ardenne (URCA)-Centre National de la Recherche Scientifique (CNRS)-Université de Reims Champagne-Ardenne (URCA)-Centre National de la Recherche Scientifique (CNRS) | Dynamique et durabilité des écosystèmes : de la source à l’océan (DECOD) ; Institut Français de Recherche pour l'Exploitation de la Mer (IFREMER)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE)-Institut national d'enseignement supérieur pour l'agriculture, l'alimentation et l'environnement (Institut Agro)-Institut Agro Rennes Angers ; Institut national d'enseignement supérieur pour l'agriculture, l'alimentation et l'environnement (Institut Agro) | Service santé de la faune et fonctionnement des écosystèmes agricoles (OFB Service Santé Agri) ; Direction de la recherche et de l’appui scientifique (OFB - DRAS) ; Office français de la biodiversité (OFB)-Office français de la biodiversité (OFB) | Ecologie fonctionnelle et biogéochimie des sols et des agro-écosystèmes (UMR Eco&Sols) ; Centre de Coopération Internationale en Recherche Agronomique pour le Développement (Cirad)-Institut de Recherche pour le Développement (IRD)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE)-Institut Agro Montpellier ; Institut national d'enseignement supérieur pour l'agriculture, l'alimentation et l'environnement (Institut Agro)-Institut national d'enseignement supérieur pour l'agriculture, l'alimentation et l'environnement (Institut Agro) | MARine Biodiversity Exploitation and Conservation - MARBEC (UMR MARBEC) ; Institut de Recherche pour le Développement (IRD)-Institut Français de Recherche pour l'Exploitation de la Mer (IFREMER)-Centre National de la Recherche Scientifique (CNRS)-Université de Montpellier (UM) | Agroécologie [Dijon] ; Université de Bourgogne (UB)-Université Bourgogne Franche-Comté [COMUE] (UBFC)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE)-Institut Agro Dijon ; Institut national d'enseignement supérieur pour l'agriculture, l'alimentation et l'environnement (Institut Agro)-Institut national d'enseignement supérieur pour l'agriculture, l'alimentation et l'environnement (Institut Agro) | Ecosystèmes aquatiques et changements globaux (UR EABX) ; Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE) | Direction de l'Expertise scientifique collective, de la Prospective et des Etudes (DEPE) ; Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE) | OFB (Plan Ecophyto)
International audience | Copper-based plant protection products (PPPs) are widely used in both conventional and organic farming, and to a lesser extent for non-agricultural maintenance of gardens, greenspaces, and infrastructures. The use of copper PPPs adds to environmental contamination by this trace element. This paper aims to review the contribution of these PPPs to the contamination of soils and waters by copper in the context of France (which can be extrapolated to most of the European countries), and the resulting impacts on terrestrial and aquatic biodiversity, as well as on ecosystem functions. It was produced in the framework of a collective scientific assessment on the impacts of PPPs on biodiversity and ecosystem services in France. Current science shows that copper, which persists in soils, can partially transfer to adjacent aquatic environments (surface water and sediment) and ultimately to the marine environment. This widespread contamination impacts biodiversity and ecosystem functions, chiefly through its effects on phototrophic and heterotrophic microbial communities, and terrestrial and aquatic invertebrates. Its effects on other biological groups and biotic interactions remain relatively under-documented.
Afficher plus [+] Moins [-]Sublethal effects of epoxiconazole on the earthworm Aporrectodea icterica
2016
Pelosi, Céline | Lebrun, Maxime | Beaumelle, Léa | Cheviron, Nathalie | Delarue, Ghislaine | Nelieu, Sylvie | Ecologie fonctionnelle et écotoxicologie des agroécosystèmes (ECOSYS) ; Institut National de la Recherche Agronomique (INRA)-AgroParisTech
Avec nos remerciements à Jodie Thénard, Virginie Grondin, Jean-Pierre Pétraud, Amélie Trouvé, Christelle Marrauld et Françoise Poiroux | Earthworms play a key role in agroecosystem soil processes. This study aims to assess the effects of different doses of a commercial formulation of epoxiconazole (Opus®), a persistent and widely used fungicide, on the earthworm Aporrectodea icterica. A laboratory study was conducted in a natural soil in order to measure effects of Opus® on earthworm mortality, uptake, weight gain, enzymatic activities (catalase and glutathione-S-transferase), and energy resources (lipids and glycogens). The estimated LC50 was 45.5 mg kg−1, or 268 times the recommended dose. Weight gains were 28, 19, and 13 % of the initial weight after 28 days of exposure in the control and D1 and D10 (1 and 10 times the recommended dose) treatments, respectively. No difference was observed for catalase activity between the three treatments, at 7, 14, or 28 days. The glutathion-S-transferase (GST) activity was two times as high in D1 as in D0 at 14 days. At 28 days, glycogen concentration was lower in D10 than in the D1 treatment. This study highlighted moderate sublethal effects of the commercial formulation Opus® for earthworms. Considering that these effects were observed on a species found in cultivated fields, even at recommended rates, much more attention should be paid to this pesticide.
Afficher plus [+] Moins [-]Insight into the uptake, accumulation, and metabolism of the fungicide phenamacril in lettuce (Lactuca sativa L.) and radish (Raphanus sativus L.)
2022
Tao, Yan | Xing, Yinghui | Jing, Junjie | Yu, Pingzhong | He, Min | Zhang, Jinwei | Chen, Li | Jia, Chunhong | Zhao, Ercheng
The fungal species Fusarium can cause devastating disease in agricultural crops. Phenamacril is an extremely specific cyanoacrylate fungicide and a strobilurine analog that has excellent efficacy against Fusarium. To date, information on the mechanisms involved in the uptake, accumulation, and metabolism of phenamacril in plants is scarce. In this study, lettuce and radish were chosen as model plants for a comparative analysis of the absorption, accumulation, and metabolic characteristics of phenamacril from a polluted environment. We determined the total amount of phenamacril in the plant-water system by measuring the concentrations in the solution and plant tissues at frequent intervals over the exposure period. Phenamacril was readily taken up by the plant roots with average root concentration factor ranges of 60.8–172.7 and 16.4–26.9 mL/g for lettuce and radish, respectively. However, it showed limited root-to-shoot translocation. The lettuce roots had a 2.8–12.4-fold higher phenamacril content than the shoots; whereas the radish plants demonstrated the opposite, with the shoots having 1.5 to 10.0 times more phenamacril than the roots. By the end of the exposure period, the mass losses from the plant-water systems reached 72.0% and 66.3% for phenamacril in lettuce and radish, respectively, suggesting evidence of phenamacril biotransformation. Further analysis confirmed that phenamacril was metabolized via hydroxylation, hydrolysis of esters, demethylation, and desaturation reactions, and formed multiple transformation products. This study furthers our understanding of the fate of phenamacril when it passes from the environment to plants and provides an important reference for its scientific use and risk assessment.
Afficher plus [+] Moins [-]Fungicide application can intensify clay aggregation and exacerbate copper accumulation in citrus soils
2021
Dao, Trang T. | Tran, Thu T.T. | Nguyen, Anh M. | Nguyen, Ly N. | Pham, Phuong T.M. | Tsubota, Toshiki | Nguyen, Minh N.
Fungicide application for controlling fungal diseases can increase copper (Cu) accumulation in soil. More urgently, Cu released from fungicides can associate with soil clay and favour the mutual aggregation of Cu and soil clay, thereby potentially intensifying the accumulation of Cu. We investigated the effects of Cu salt and six common Cu-based fungicides on colloidal dynamics of a clay fraction from citrus cultivated soil. Batch experiments were carried out to provide the loading capacity of the clay fraction for Cu. The colloidal dynamic experiments were performed over a pH range from 3 to 8 following a test tube method, while surface charge, the key electrochemical factor of the solid-liquid interface, was quantified by a particle charge detector. It was found that all the studied fungicides, via releasing Cu²⁺, acted to effectively favour clay aggregation. The dissolved organic matter obtained from the dissolution of polymers in fungicides can theoretically stimulate clay dispersion. However, their effects were obscured due to the overwhelming effect of Cu²⁺. Therefore, Cu²⁺ appears as the most active agent in the fungicides that intensifies clay aggregation. These findings imply that the intensive application of fungicides for plant protection purposes can inadvertently reduce clay mobility, favour the co-aggregation of clay and fungicides, and hence potentially exacerbate the contamination of the citrus soil.
Afficher plus [+] Moins [-]Does long-term fungicide exposure affect the reproductive performance of leaf-shredders? A partial life-cycle study using Hyalella azteca
2017
Baudy, Patrick | Zubrod, Jochen P. | Konschak, Marco | Weil, Mirco | Schulz, Ralf | Bundschuh, Mirco
Leaf-shredding amphipods play a critical role in the ecosystem function of leaf litter breakdown, a key process in many low order streams. Fungicides, however, may adversely influence shredders' behavior and the functions they provide, while there is only limited knowledge concerning effects on their reproductive performance. To assess the latter, a semi-static 56-day partial life-cycle bioassay using the model shredder Hyalella azteca (n = 30) was performed applying two environmentally relevant concentrations of a model fungicide mixture (i.e., 5 and 25 μg/L) composed of five fungicides with different modes of toxic action. Variables related to the food processing (leaf consumption and feces production), growth (body length and dry weight), energy reserves (lipid content), and reproduction (amplexus pairs, number and length of offspring) were determined to understand potential implications in the organisms' energy budget. While the fungicides did not affect leaf consumption, both fungicide treatments significantly reduced amphipods' feces production (∼20%) compared to the control. This observation suggests an increased food utilization to counteract the elevated and stress-related energy demand: although growth as well as energy reserves were unaffected, amplexus pairs were less frequently observed in both fungicide treatments (∼50–100%) suggesting a tradeoff regarding energy allocation favoring the maintenance of fundamental functions at the organism level over reproduction. As a result, the time to release of first offspring was delayed in both fungicide treatments (7 and 14 days) and the median number of offspring was significantly lower in the 25-μg/L treatment (100%), whereas offspring length remained unaffected. The results of this study thus indicate that chronic fungicide exposures can negatively impact shredders' reproductive performance. This may translate into lower abundances and thus a reduced contribution to leaf litter breakdown in fungicide-impacted streams with potentially far-reaching consequences for detritus-based food webs.
Afficher plus [+] Moins [-]Degradation and sorption of the fungicide tebuconazole in soils from golf greens
2016
Badawi, Nora | Rosenbom, Annette E. | Jensen, Anne M.D. | Sørensen, Sebastian R.
The fungicide tebuconazole (TBZ) is used to repress fungal growth in golf greens and ensure their playability. This study determined the degradation and sorption of TBZ applied as an analytical grade compound, a commercial fungicide formulation or in combination with a surfactant product in thatch and soils below two types of greens (USGA and push-up greens) in 12-cm vertical profiles covered by three different types of turf grass. Only minor TBZ degradation was observed and it was most pronounced in treatments with the commercial fungicide product or in combination with the surfactant compared to the analytical grade compound alone. A tendency for higher TBZ sorption when applied as the formulated product and lowest sorption when applied as a formulated product in combination with the surfactant was observed, with this effect being most distinct on USGA greens. No correlation between occurrence of degradation and soil depth, green type or grass type was observed. Sorption seemed to be the main process governing the leaching risk of TBZ from the greens and a positive correlation to the organic matter content was shown. In light of these findings, organic matter content should be taken into consideration during the construction of golf courses, especially when following USGA guidelines.
Afficher plus [+] Moins [-]Fungicides enhanced the abundance of antibiotic resistance genes in greenhouse soil
2020
Zhang, Houpu | Chen, Shiyu | Zhang, Qianke | Long, Zhengnan | Yu, Yunlong | Fang, Hua
Long-term substantial application of fungicides in greenhouse cultivation led to residual pollution in soils and then altered soil microbial community. However, it is unclear whether residual fungicides could affect the diversity and abundance of antibiotic resistance genes (ARGs) in greenhouse soils. Here, the dissipation of fungicides and its impact on the abundance of ARGs were determined using shotgun metagenomic sequencing in the greenhouse and mountain soils under laboratory conditions. Our results showed the greenhouse soils harbored more diverse and abundant ARGs than the mountain soils. The application of carbendazim, azoxystrobin, and chlorothalonil could increase the abundance of total ARGs in the greenhouse soils, especially for those dominant ARG subtypes including sul2, sul1, aadA, tet(L), tetA(G), and tetX2. The abundant ARGs were significantly correlated with mobile genetic elements (MGEs, e.g. intI1and R485) in the greenhouse soils but no significant relationship in the mountain soils. Meanwhile, the co-occurrence patterns of ARGs and MGEs, e.g., sul2 and R485, sul1 and transposase, were further verified via the genetic arrangement of genes on the metagenome-assembled contigs in the greenhouse soils. Additionally, host tracking analysis indicated that ARGs were mainly carried by enterobacteria in the greenhouse soils but actinomyces in the mountain soils. These findings confirmed that some fungicides might serve as the co-selectors of ARGs and elevated their abundance via MGEs-mediated horizontal gene transfer in the greenhouse soils.
Afficher plus [+] Moins [-]Occurrence and overlooked sources of the biocide carbendazim in wastewater and surface water
2018
Merel, Sylvain | Benzing, Saskia | Gleiser, Carolin | Di Napoli-Davis, Gina | Zwiener, Christian
Carbendazim is a fungicide commonly used as active substance in plant protection products and biocidal products, for instance to protect facades of buildings against fungi. However, the subsequent occurrence of this fungicide and potential endocrine disruptor in the aqueous environment is a major concern. In this study, high resolution mass spectrometry shows that carbendazim can be detected with an increasing abundance from the source to the mouth of the River Rhine. Unexpectedly, the abundance of carbendazim correlates poorly with that of other fungicides used as active ingredients in plant protection products (r² of 0.32 for cyproconazole and r² of 0.57 for propiconazole) but it correlates linearly with that of pharmaceuticals (r² of 0.86 for carbamazepine and r² of 0.89 for lamotrigine). These results suggest that the occurrence of carbendazim in surface water comes mainly from the discharge of treated domestic wastewater. This hypothesis is further confirmed by the detection of carbendazim in wastewater effluents (n = 22). In fact, bench-scale leaching tests of textiles and papers revealed that these materials commonly found in households could be a source of carbendazim in domestic wastewater. Moreover, additional river samples collected nearby two paper industries indicate that the discharge of their treated process effluents is also a source of carbendazim in the environment. While characterizing paper and textile as overlooked sources of carbendazim, this study also shows the biocide as a possible ubiquitous wastewater contaminant that would require further systematic and worldwide monitoring due to its toxicological properties.
Afficher plus [+] Moins [-]Joint effects of pesticides and ultraviolet-B radiation on amphibian larvae
2015
Yu, Shuangying | Wages, Mike | Willming, Morgan | Cobb, George P. | Maul, Jonathan D.
A combination of multiple stressors may be linked to global amphibian declines. Of these, pesticides and UVB radiation co-exposures were examined on the African clawed frog (Xenopus laevis) to provide information that may be useful for amphibian conservation. The independent action model and inferential statistics were used to examine interactions between pesticides (malathion, endosulfan, α-cypermethrin, or chlorothalonil) and environmentally relevant UVB exposures. UVB radiation alone caused 35–68% mortality and nearly 100% of malformations. Pesticides and UVB had additive effects on larval mortality; however, several non-additive effects (antagonistic and synergistic interactions) were observed for total body length. Insecticides mainly affected axial development, whereas UVB radiation caused high incidence of edema, gut malformations, and abnormal tail tips. These results suggest that sublethal developmental endpoints were more sensitive for detecting joint effects. This work has implications for amphibian risk assessments for ecosystems where pesticides and high UVB radiation may co-occur.
Afficher plus [+] Moins [-]