Affiner votre recherche
Résultats 1-10 de 12
Stereo-selective cardiac toxicity induced by metconazole via oxidative stress and the wnt/β-catenin signaling pathway in zebrafish embryos Texte intégral
2024
Liu, Lulu | Wang, Fengzhong | Zhang, Zhong | Fan, Bei | Luo, Ying | Li, Ling | Zhang, Yifan | Yan, Zhihui | Kong, Zhiqiang | Francis, Frédéric | Li, Minmin
peer reviewed | Metconazole (MEZ), a chiral triazole fungicide, produces enantioselective adverse effects in non-target organisms. Among MEZ's isomers, cis-MEZ displays robust antimicrobial properties. Evaluating MEZ and cis-MEZ's toxicity may mitigate fungicide usage and safeguard non-target organisms. Our study evaluated the toxicity of MEZ and its cis-isomers at concentrations of 0.02, 0.2, 2, and 4 mg L−1. We report stereoselectivity and severe cardiovascular defects in zebrafish, including pericardial oedema, decreased heart rate, increased sinus venous and bulbous arteries distances, intersegmental vessel defects, and altered cardiovascular development genes (hand2, gata4, nkx2.5, tbx5, vmhc, amhc, dll4, vegfaa, and vegfc). Further, MEZ significantly increased oxidative stress and apoptosis in zebrafish, primarily in the cardiac region. Isoquercetin, an antioxidant found in plants, partially mitigates MEZ-induced cardiac defects. Furthermore, MEZ upregulated the Wnt/β-catenin pathway genes (wnt3, β-catenin, axin2, and gsk-3β) and β-catenin protein expression. Inhibitor of Wnt Response-1 (IWR-1) rescued MEZ-induced cardiotoxicity. Our findings highlight oxidative stress, altered cardiovascular development genes, and upregulated Wnt/β-catenin signaling as contributors to cardiovascular toxicity in response to MEZ and cis-MEZ treatments. Importantly, 1R,5S-MEZ exhibited greater cardiotoxicity than 1S,5R-MEZ. Thus, our study provides a comprehensive understanding of cis-MEZ's cardiovascular toxicity in aquatic life. © 2024 Elsevier Ltd
Afficher plus [+] Moins [-]Fungicides enhanced the abundance of antibiotic resistance genes in greenhouse soil Texte intégral
2020
Zhang, Houpu | Chen, Shiyu | Zhang, Qianke | Long, Zhengnan | Yu, Yunlong | Fang, Hua
Long-term substantial application of fungicides in greenhouse cultivation led to residual pollution in soils and then altered soil microbial community. However, it is unclear whether residual fungicides could affect the diversity and abundance of antibiotic resistance genes (ARGs) in greenhouse soils. Here, the dissipation of fungicides and its impact on the abundance of ARGs were determined using shotgun metagenomic sequencing in the greenhouse and mountain soils under laboratory conditions. Our results showed the greenhouse soils harbored more diverse and abundant ARGs than the mountain soils. The application of carbendazim, azoxystrobin, and chlorothalonil could increase the abundance of total ARGs in the greenhouse soils, especially for those dominant ARG subtypes including sul2, sul1, aadA, tet(L), tetA(G), and tetX2. The abundant ARGs were significantly correlated with mobile genetic elements (MGEs, e.g. intI1and R485) in the greenhouse soils but no significant relationship in the mountain soils. Meanwhile, the co-occurrence patterns of ARGs and MGEs, e.g., sul2 and R485, sul1 and transposase, were further verified via the genetic arrangement of genes on the metagenome-assembled contigs in the greenhouse soils. Additionally, host tracking analysis indicated that ARGs were mainly carried by enterobacteria in the greenhouse soils but actinomyces in the mountain soils. These findings confirmed that some fungicides might serve as the co-selectors of ARGs and elevated their abundance via MGEs-mediated horizontal gene transfer in the greenhouse soils.
Afficher plus [+] Moins [-]Does long-term fungicide exposure affect the reproductive performance of leaf-shredders? A partial life-cycle study using Hyalella azteca Texte intégral
2017
Baudy, Patrick | Zubrod, Jochen P. | Konschak, Marco | Weil, Mirco | Schulz, Ralf | Bundschuh, Mirco
Leaf-shredding amphipods play a critical role in the ecosystem function of leaf litter breakdown, a key process in many low order streams. Fungicides, however, may adversely influence shredders' behavior and the functions they provide, while there is only limited knowledge concerning effects on their reproductive performance. To assess the latter, a semi-static 56-day partial life-cycle bioassay using the model shredder Hyalella azteca (n = 30) was performed applying two environmentally relevant concentrations of a model fungicide mixture (i.e., 5 and 25 μg/L) composed of five fungicides with different modes of toxic action. Variables related to the food processing (leaf consumption and feces production), growth (body length and dry weight), energy reserves (lipid content), and reproduction (amplexus pairs, number and length of offspring) were determined to understand potential implications in the organisms' energy budget. While the fungicides did not affect leaf consumption, both fungicide treatments significantly reduced amphipods' feces production (∼20%) compared to the control. This observation suggests an increased food utilization to counteract the elevated and stress-related energy demand: although growth as well as energy reserves were unaffected, amplexus pairs were less frequently observed in both fungicide treatments (∼50–100%) suggesting a tradeoff regarding energy allocation favoring the maintenance of fundamental functions at the organism level over reproduction. As a result, the time to release of first offspring was delayed in both fungicide treatments (7 and 14 days) and the median number of offspring was significantly lower in the 25-μg/L treatment (100%), whereas offspring length remained unaffected. The results of this study thus indicate that chronic fungicide exposures can negatively impact shredders' reproductive performance. This may translate into lower abundances and thus a reduced contribution to leaf litter breakdown in fungicide-impacted streams with potentially far-reaching consequences for detritus-based food webs.
Afficher plus [+] Moins [-]Occurrence and overlooked sources of the biocide carbendazim in wastewater and surface water Texte intégral
2018
Merel, Sylvain | Benzing, Saskia | Gleiser, Carolin | Di Napoli-Davis, Gina | Zwiener, Christian
Carbendazim is a fungicide commonly used as active substance in plant protection products and biocidal products, for instance to protect facades of buildings against fungi. However, the subsequent occurrence of this fungicide and potential endocrine disruptor in the aqueous environment is a major concern. In this study, high resolution mass spectrometry shows that carbendazim can be detected with an increasing abundance from the source to the mouth of the River Rhine. Unexpectedly, the abundance of carbendazim correlates poorly with that of other fungicides used as active ingredients in plant protection products (r² of 0.32 for cyproconazole and r² of 0.57 for propiconazole) but it correlates linearly with that of pharmaceuticals (r² of 0.86 for carbamazepine and r² of 0.89 for lamotrigine). These results suggest that the occurrence of carbendazim in surface water comes mainly from the discharge of treated domestic wastewater. This hypothesis is further confirmed by the detection of carbendazim in wastewater effluents (n = 22). In fact, bench-scale leaching tests of textiles and papers revealed that these materials commonly found in households could be a source of carbendazim in domestic wastewater. Moreover, additional river samples collected nearby two paper industries indicate that the discharge of their treated process effluents is also a source of carbendazim in the environment. While characterizing paper and textile as overlooked sources of carbendazim, this study also shows the biocide as a possible ubiquitous wastewater contaminant that would require further systematic and worldwide monitoring due to its toxicological properties.
Afficher plus [+] Moins [-]Insight into the uptake, accumulation, and metabolism of the fungicide phenamacril in lettuce (Lactuca sativa L.) and radish (Raphanus sativus L.) Texte intégral
2022
Tao, Yan | Xing, Yinghui | Jing, Junjie | Yu, Pingzhong | He, Min | Zhang, Jinwei | Chen, Li | Jia, Chunhong | Zhao, Ercheng
The fungal species Fusarium can cause devastating disease in agricultural crops. Phenamacril is an extremely specific cyanoacrylate fungicide and a strobilurine analog that has excellent efficacy against Fusarium. To date, information on the mechanisms involved in the uptake, accumulation, and metabolism of phenamacril in plants is scarce. In this study, lettuce and radish were chosen as model plants for a comparative analysis of the absorption, accumulation, and metabolic characteristics of phenamacril from a polluted environment. We determined the total amount of phenamacril in the plant-water system by measuring the concentrations in the solution and plant tissues at frequent intervals over the exposure period. Phenamacril was readily taken up by the plant roots with average root concentration factor ranges of 60.8–172.7 and 16.4–26.9 mL/g for lettuce and radish, respectively. However, it showed limited root-to-shoot translocation. The lettuce roots had a 2.8–12.4-fold higher phenamacril content than the shoots; whereas the radish plants demonstrated the opposite, with the shoots having 1.5 to 10.0 times more phenamacril than the roots. By the end of the exposure period, the mass losses from the plant-water systems reached 72.0% and 66.3% for phenamacril in lettuce and radish, respectively, suggesting evidence of phenamacril biotransformation. Further analysis confirmed that phenamacril was metabolized via hydroxylation, hydrolysis of esters, demethylation, and desaturation reactions, and formed multiple transformation products. This study furthers our understanding of the fate of phenamacril when it passes from the environment to plants and provides an important reference for its scientific use and risk assessment.
Afficher plus [+] Moins [-]Fungicide application can intensify clay aggregation and exacerbate copper accumulation in citrus soils Texte intégral
2021
Dao, Trang T. | Tran, Thu T.T. | Nguyen, Anh M. | Nguyen, Ly N. | Pham, Phuong T.M. | Tsubota, Toshiki | Nguyen, Minh N.
Fungicide application for controlling fungal diseases can increase copper (Cu) accumulation in soil. More urgently, Cu released from fungicides can associate with soil clay and favour the mutual aggregation of Cu and soil clay, thereby potentially intensifying the accumulation of Cu. We investigated the effects of Cu salt and six common Cu-based fungicides on colloidal dynamics of a clay fraction from citrus cultivated soil. Batch experiments were carried out to provide the loading capacity of the clay fraction for Cu. The colloidal dynamic experiments were performed over a pH range from 3 to 8 following a test tube method, while surface charge, the key electrochemical factor of the solid-liquid interface, was quantified by a particle charge detector. It was found that all the studied fungicides, via releasing Cu²⁺, acted to effectively favour clay aggregation. The dissolved organic matter obtained from the dissolution of polymers in fungicides can theoretically stimulate clay dispersion. However, their effects were obscured due to the overwhelming effect of Cu²⁺. Therefore, Cu²⁺ appears as the most active agent in the fungicides that intensifies clay aggregation. These findings imply that the intensive application of fungicides for plant protection purposes can inadvertently reduce clay mobility, favour the co-aggregation of clay and fungicides, and hence potentially exacerbate the contamination of the citrus soil.
Afficher plus [+] Moins [-]Degradation and sorption of the fungicide tebuconazole in soils from golf greens Texte intégral
2016
Badawi, Nora | Rosenbom, Annette E. | Jensen, Anne M.D. | Sørensen, Sebastian R.
The fungicide tebuconazole (TBZ) is used to repress fungal growth in golf greens and ensure their playability. This study determined the degradation and sorption of TBZ applied as an analytical grade compound, a commercial fungicide formulation or in combination with a surfactant product in thatch and soils below two types of greens (USGA and push-up greens) in 12-cm vertical profiles covered by three different types of turf grass. Only minor TBZ degradation was observed and it was most pronounced in treatments with the commercial fungicide product or in combination with the surfactant compared to the analytical grade compound alone. A tendency for higher TBZ sorption when applied as the formulated product and lowest sorption when applied as a formulated product in combination with the surfactant was observed, with this effect being most distinct on USGA greens. No correlation between occurrence of degradation and soil depth, green type or grass type was observed. Sorption seemed to be the main process governing the leaching risk of TBZ from the greens and a positive correlation to the organic matter content was shown. In light of these findings, organic matter content should be taken into consideration during the construction of golf courses, especially when following USGA guidelines.
Afficher plus [+] Moins [-]Joint effects of pesticides and ultraviolet-B radiation on amphibian larvae Texte intégral
2015
Yu, Shuangying | Wages, Mike | Willming, Morgan | Cobb, George P. | Maul, Jonathan D.
A combination of multiple stressors may be linked to global amphibian declines. Of these, pesticides and UVB radiation co-exposures were examined on the African clawed frog (Xenopus laevis) to provide information that may be useful for amphibian conservation. The independent action model and inferential statistics were used to examine interactions between pesticides (malathion, endosulfan, α-cypermethrin, or chlorothalonil) and environmentally relevant UVB exposures. UVB radiation alone caused 35–68% mortality and nearly 100% of malformations. Pesticides and UVB had additive effects on larval mortality; however, several non-additive effects (antagonistic and synergistic interactions) were observed for total body length. Insecticides mainly affected axial development, whereas UVB radiation caused high incidence of edema, gut malformations, and abnormal tail tips. These results suggest that sublethal developmental endpoints were more sensitive for detecting joint effects. This work has implications for amphibian risk assessments for ecosystems where pesticides and high UVB radiation may co-occur.
Afficher plus [+] Moins [-]Structural and biological trait responses of diatom assemblages to organic chemicals in outdoor flow-through mesocosms Texte intégral
2014
Bayona, Yannick | Roucaute, Marc | Cailleaud, Kevin | Lagadic, Laurent | Bassères, Anne | Caquet, Thierry
Structural and biological trait responses of diatom assemblages to organic chemicals in outdoor flow-through mesocosms Texte intégral
2014
Bayona, Yannick | Roucaute, Marc | Cailleaud, Kevin | Lagadic, Laurent | Bassères, Anne | Caquet, Thierry
The sensitivity of diatom taxonomy and trait-based endpoints to chemicals has been poorly used so far in Environmental Risk Assessment. In this study, diatom assemblages in outdoor flow-through mesocosms were exposed to thiram (35 and 170 μg/L), and a hydrocarbon emulsion (HE; 0.01, 0.4, 2 and 20 mg/L). The effects of exposure were assessed for 12 weeks, including 9 weeks post-treatment, using taxonomic structure and diversity, bioindication indices, biological traits, functional diversity indices, indicator classes and ecological guilds. For both chemicals, diversity increased after the treatment period, and responses of ecological traits were roughly identical with an abundance increase of motile taxa tolerant to organic pollution and decrease of low profile taxa. Bioindication indices were not affected. Traits provided a complementary approach to biomass measurements and taxonomic descriptors, leading to a more comprehensive overview of ecological changes due to organic chemicals, including short- and long-term effects on biofilm structure and functioning.
Afficher plus [+] Moins [-]Structural and biological trait responses of diatom assemblages to organic chemicals in outdoor flow-through mesocosms
Wildlife ecotoxicology of plant protection products: knowns and unknowns about the impacts of currently used pesticides on terrestrial vertebrate biodiversity Texte intégral
2025
Fritsch, Clémentine | Berny, Philippe | Crouzet, Olivier | Le Perchec, Sophie | Coeurdassier, Michael | Laboratoire Chrono-environnement (UMR 6249) (LCE) ; Centre National de la Recherche Scientifique (CNRS)-Université de Franche-Comté (UFC) ; Université Bourgogne Franche-Comté [COMUE] (UBFC)-Université Bourgogne Franche-Comté [COMUE] (UBFC) | VetAgro Sup - Institut national d'enseignement supérieur et de recherche en alimentation, santé animale, sciences agronomiques et de l'environnement (VAS) | Interactions Cellules Environnement - UR (ICE) ; VetAgro Sup - Institut national d'enseignement supérieur et de recherche en alimentation, santé animale, sciences agronomiques et de l'environnement (VAS) | Service santé de la faune et fonctionnement des écosystèmes agricoles (OFB Service Santé Agri) ; OFB Direction de la recherche et de l’appui scientifique (OFB - DRAS) ; Office français de la biodiversité (OFB)-Office français de la biodiversité (OFB) | Direction pour la Science Ouverte (DipSO) ; Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE)
International audience | Agricultural practices are a major cause of the current loss of biodiversity. Among postwar agricultural intensification practices, the use of plant protection products (PPPs) might be one of the prominent drivers of the loss of wildlife diversity in agroecosystems. A collective scientific assessment was performed upon the request of the French Ministries responsible for the Environment, for Agriculture and for Research to review the impacts of PPPs on biodiversity and ecosystem services based on the scientific literature. While the effects of legacy banned PPPs on ecosystems and the underlying mechanisms are well documented, the impacts of current use pesticides (CUPs) on biodiversity have rarely been reviewed. Here, we provide an overview of the available knowledge related to the impacts of PPPs, including biopesticides, on terrestrial vertebrates (i.e. herptiles, birds including raptors, bats and small and large mammals). We focused essentially on CUPs and on endpoints at the subindividual, individual, population and community levels, which ultimately linked with effects on biodiversity. We address both direct toxic effects and indirect effects related to ecological processes and review the existing knowledge about wildlife exposure to PPPs. The effects of PPPs on ecological functions and ecosystem services are discussed, as are the aggravating or mitigating factors. Finally, a synthesis of knowns and unknowns is provided, and we identify priorities to fill gaps in knowledge and perspectives for research and wildlife conservation.
Afficher plus [+] Moins [-]