Affiner votre recherche
Résultats 1-10 de 20
Ecotoxicological effects of traffic-related metal sediment pollution in Lumbriculus variegatus and Gammarus sp
2021
Kontchou, Julios A. | Nachev, Milen | Sures, Bernd
To reduce direct discharges of surface runoff to receiving waters, separate sewer systems have been implemented, with runoff retention basins (RRB) for pollutant pretreatment by sedimentation and infiltration. However, due to frequent and intense precipitation events, most RRBs are overwhelmed by runoff resulting in overflow into the receiving freshwater bodies. Hence, the present study evaluates the impact of traffic-related runoff overflow on metal concentrations in sediment and Gammarus sp. Downstream of the RRB outfall in the receiving stream. Samples were collected from the RRB, upstream (reference site) and at different distances downstream from the RRB outfall in the stream. The samples were analyzed for the presence and distribution of metals using ICP-MS. Furthermore, ecotoxicological effects of the overflow on benthic species were assessed using Lumbriculus variegatus exposed to the field sediments. Our findings reveal that overflow of the RRB results in elevated traffic-related metal concentrations in sediment and biota of the stream. Within the first 50 m downstream increased sediment metal concentrations were found. The gammarids downstream of the RRB outfall showed an increased accumulation of several metals. Similarly, the metals were found to be taken up by the endobenthic L. variegatus under laboratory conditions and the bioaccumulation pattern was related to the sediment concentrations. Bioaccumulation by both organisms is an indication that overflow of the RRB also leads to uptake of increased element amounts in organisms downstream. Laboratory-based studies addressing standard toxicity endpoints showed no clear toxic effects on growth and reproduction. However, elevated levels of metallothioneins were measured in the annelids during the test period. This indicates a physiological response induced by increased metal concentrations due to RRB overflow. Hence, the results of this study show that discharges by the RRB increase the metal concentration in the receiving stream with the possibility of adverse effects on organisms.
Afficher plus [+] Moins [-]Accumulation of trace metals in freshwater macroinvertebrates across metal contamination gradients
2021
Arnold, Amanda | Murphy, John F. | Pretty, James L. | Duerdoth, Charles P. | Smith, Brian D. | Rainbow, P. S. | Spencer, Kate L. | Collins, Adrian L. | Jones, J Iwan
Historical mining activities cause widespread, long-term trace metal contamination of freshwater ecosystems. However, measuring trace metal bioavailability has proven difficult, because it depends on many factors, not least concentrations in water, sediment and habitat. Simple tools are needed to assess bioavailabilities. The use of biomonitors has been widely advocated to provide a realistic measure. To date there have been few attempts to identify ubiquitous patterns of trace metal accumulation within and between freshwater biomonitors at geographical scales relevant to trace metal contamination. Here we address this through a nationwide collection of freshwater biomonitors (species of Gammarus, Leuctra, Baetis, Rhyacophila, Hydropsyche) from 99 English and Welsh stream sites spanning a gradient of high to low trace metal loading. The study tested for inter-biomonitor variation in trace metal body burden, and for congruence amongst accumulations of trace metals within taxa and between taxa across the gradient. In general, significant differences in trace metal body burden occurred between taxa: Gammarus sp. was the most different compared with insect biomonitors. Bivariate relationships between trace metals within biomonitors reflected trace metal profiles in the environment. Strong correlations between some trace metals suggested accumulation was also influenced by physiological pathways. Bivariate relationships between insect biomonitors for body burdens of As, Cu, Mn and Pb were highly consistent. Our data show that irrespective of taxonomic or ecological differences, there is a commonality of response amongst insect taxa, indicating one or more could provide consistent measures of trace metal bioavailability.
Afficher plus [+] Moins [-]Modulation of PAH toxicity on the freshwater organism G. roeseli by microparticles
2020
Bartonitz, Astrid | Anyanwu, Ihuoma N. | Geist, Juergen | Imhof, Hannes K. | Reichel, Julia | Graßmann, Johanna | Drewes, Joerg E. | Beggel, Sebastian
Polycyclic aromatic hydrocarbons are widespread and environmentally persistent chemicals that readily bind to particles in air, soil and sediment. Plastic particles, which are also an ubiquitous global contamination problem, may thus modulate their environmental fate and ecotoxicity. First, the acute aqueous toxicity of phenanthrene in adult Gammarus roeseli was determined with a LC₅₀ of 471 μg/L after 24 h and 441 μg/L after 48 h. Second, considering lethal and sublethal endpoints, effects of phenanthrene concentration on G. roeseli were assessed in relation to the presence of anthropogenic and natural particles. The exposure of gammarids in presence of either particle type with phenanthrene resulted after 24 and 48 h in reduced effect size. Particle exposure alone did not result in any effects. The observed reduction of phenanthrene toxicity by polyamide contradicts the discussion of microplastics acting as a vector or synergistically. Especially, no difference in modulation by plastic particles and naturally occurring sediment particles was measured. These findings can most likely be explained by the similar adsorption of phenanthrene to both particle types resulting in reduced bioavailability.
Afficher plus [+] Moins [-]The impact of gypsum mine water: A case study on morphology and DNA integrity in the freshwater invertebrate, Gammarus balcanicus
2014
Ternjej, Ivančica | Mihaljević, Zlatko | Ivković, Marija | Previšić, Ana | Stanković, Igor | Maldini, Krešimir | Želježić, Davor | Kopjar, Nevenka
The aim of our study was to investigate how exposure to heavy metal-rich waters from gypsum mining affects the morphology and levels of primary DNA damage in Gammarus balcanicus. Chemical analysis revealed increased concentrations of metals in water and sediment collected at a site impacted by gypsum mine wastewaters. The specimens also showed elevated total tissue metal levels when compared with the organisms collected at the reference site. The most prominent increase was observed for strontium, followed by iron, nickel, vanadium, aluminium, and manganese. The major pathway of entry for these toxic substances was through the degraded exoskeleton as a consequence of excessive strontium input (unbalanced calcium/strontium ratio) and altered permeability. Disturbed exoskeleton integrity was observed only in individuals collected downstream of the gypsum mine, which was confirmed by electron microscopy. Levels of primary DNA damage were evaluated using the alkaline comet assay in the haemolymph of the specimens.
Afficher plus [+] Moins [-]Trophic transfer of pyrene metabolites between aquatic invertebrates
2013
Carrasco Navarro, V. | Leppänen, M.T. | Kukkonen, J.V.K. | Godoy Olmos, S.
The trophic transfer of pyrene metabolites was studied using Gammarus setosus as a predator and the invertebrates Lumbriculus variegatus and Chironomus riparius as prey. The results obtained by liquid scintillation counting confirmed that the pyrene metabolites produced by the aquatic invertebrates L. variegatus and C. riparius were transferred to G. setosus through the diet. More detailed analyses by liquid chromatography discovered that two of the metabolites produced by C. riparius appeared in the chromatograms of G. setosus tissue extracts, proving their trophic transfer. These metabolites were not present in chromatograms of G. setosus exclusively exposed to pyrene. The present study supports the trophic transfer of PAH metabolites between benthic macroinvertebrates and common species of an arctic amphipod. As some PAH metabolites are more toxic than the parent compounds, the present study raises concerns about the consequences of their trophic transfer and the fate and effects of PAHs in natural environments.
Afficher plus [+] Moins [-]Seasonal pollutant levels in littoral high-Arctic amphipods in relation to food sources and terrestrial run-off
2022
Skogsberg, Emelie | McGovern, Maeve | Poste, Amanda | Jonsson, Sofi | Arts, Michael T. | Varpe, Øystein | Borgå, Katrine
Increasing terrestrial run-off from melting glaciers and thawing permafrost to Arctic coastal areas is expected to facilitate re-mobilization of stored legacy persistent organic pollutants (POPs) and mercury (Hg), potentially increasing exposure to these contaminants for coastal benthic organisms. We quantified chlorinated POPs and Hg concentrations, lipid content and multiple dietary markers, in a littoral deposit-feeding amphipod Gammarus setosus and sediments during the melting period from April to August in Adventelva river estuary in Svalbard, a Norwegian Arctic Aarchipelago. There was an overall decrease in concentrations of ∑POPs from April to August (from 58 ± 23 to 13 ± 4 ng/g lipid weight; lw), Hg (from 5.6 ± 0.7 to 4.1 ± 0.5 ng/g dry weight; dw) and Methyl Hg (MeHg) (from 5 ± 1 to 0.8 ± 0.7 ng/g dw) in G. setosus. However, we observed a seasonal peak in penta- and hexachlorobenzene (PeCB and HCB) in May (2.44 ± 0.3 and 23.6 ± 1.7 ng/g lw). Sediment concentrations of POPs and Hg (dw) only partly correlated with the contaminant concentrations in G. setosus. Dietary markers, including fatty acids and carbon and nitrogen stable isotopes, indicated a diet of settled phytoplankton in May–July and a broader range of carbon sources after the spring bloom. Phytoplankton utilization and chlorobenzene concentrations in G. setosus exhibited similar seasonal patterns, suggesting a dietary uptake of chlorobenzenes that is delivered to the aquatic environment during spring snowmelt. The seasonal decrease in contaminant concentrations in G. setosus could be related to seasonal changes in dietary contaminant exposure and amphipod ecology. Furthermore, this decrease implies that terrestrial run-off is not a significant source of re-mobilized Hg and legacy POPs to littoral amphipods in the Adventelva river estuary during the melt season.
Afficher plus [+] Moins [-]Does temporal variation of mercury levels in Arctic seabirds reflect changes in global environmental contamination, or a modification of Arctic marine food web functioning?
2016
Fort, Jérôme | Grémillet, David | Traisnel, Gwendoline | Amélineau, Françoise | Bustamante, Paco
Studying long-term trends of contaminants in Arctic biota is essential to better understand impacts of anthropogenic activities and climate change on the exposure of sensitive species and marine ecosystems. We concurrently measured temporal changes (2006–2014) in mercury (Hg) contamination of little auks (Alle alle; the most abundant Arctic seabird) and in their major zooplankton prey species (Calanoid copepods, Themisto libellula, Gammarus spp.). We found an increasing contamination of the food-chain in East Greenland during summer over the last decade. More specifically, bird contamination (determined by body feather analyses) has increased at a rate of 3.4% per year. Conversely, bird exposure to Hg during winter in the northwest Atlantic (determined by head feather analyses) decreased over the study period (at a rate of 1.5% per year), although winter concentrations remained consistently higher than during summer. By combining mercury levels measured in birds and zooplankton to isotopic analyses, our results demonstrate that inter-annual variations of Hg levels in little auks reflect changes in food-chain contamination, rather than a reorganization of the food web and a modification of seabird trophic ecology. They therefore underline the value of little auks, and Arctic seabirds in general, as bio-indicators of long-term changes in environmental contamination.
Afficher plus [+] Moins [-]Artificial light at night (ALAN) affects behaviour, but does not change oxidative status in freshwater shredders
2022
Czarnecka, Magdalena | Jermacz, Łukasz | Glazińska, Paulina | Kulasek, Milena | Kobak, Jarosław
Artificial light at night (ALAN) alters circadian rhythms in animals and therefore can be a source of environmental stress affecting their physiology and behaviour. The impact of ALAN can be related to the increased light level, but also to the spectral composition of night lighting. Previous research showed that many species can be particularly sensitive to the LED light, but it is unclear if they respond to its broad spectrum or specifically to the blue light wavelength. In this study, we tested whether dim ALAN (2 lx) differing in the spectral quality (warm white LED, blue LED, high-pressure sodium HPS light) modifies behaviour and changes oxidative status in two nocturnal freshwater shredder species: Dikerogammarus villosus and Gammarus jazdzewskii (Gammaroidea, Amphipoda). Our experiment revealed that ALAN, irrespective of its spectral quality, did not affect the oxidative stress markers in cells (the level of reactive oxygen species and lipid peroxidation). However, ALAN changed the gammarid behaviour in a species-specific manner, which can potentially reduce the fitness of the shredders. Dikerogammarus villosus avoided all types of light compared to darkness. Therefore, confined to the shelter, D. villosus may have fewer opportunities to forage and/or mate. Gammarus jazdzewskii was sensitive only to the narrow-spectrum blue light, but did not respond to the HPS and white LED light. Avoidance is a typical response of gammarids to natural light, thus the disruption of this behaviour in the presence of common ALAN sources can increase the predation risk in this species. To summarize, behavioural modifications induced by ALAN seem more pronounced than changes in physiology and can constitute the main driver of disturbances in the processing of organic matter in freshwater ecosystems by invertebrate shredders.
Afficher plus [+] Moins [-]UV-irradiation and leaching in water reduce the toxicity of imidacloprid-contaminated leaves to the aquatic leaf-shredding amphipod Gammarus fossarum
2018
Englert, Dominic | Zubrod, Jochen P. | Neubauer, Christoph | Schulz, Ralf | Bundschuh, Mirco
Systemic neonicotinoid insecticides such as imidacloprid are increasingly applied against insect pest infestations on forest trees. However, leaves falling from treated trees may reach nearby surface waters and potentially represent a neonicotinoid exposure source for aquatic invertebrates. Given imidacloprid's susceptibility towards photolysis and high water solubility, it was hypothesized that the leaves' toxicity might be modulated by UV-irradiation during decay on the forest floor, or by leaching and re-mobilization of the insecticide from leaves within the aquatic ecosystem. To test these hypotheses, the amphipod shredder Gammarus fossarum was fed (over 7 d; n = 30) with imidacloprid-contaminated black alder (Alnus glutinosa) leaves that had either been pre-treated (i.e., leached) in water for up to 7 d or UV-irradiated for 1 d (at intensities relevant during autumn in Central Europe) followed by a leaching duration of 1 d. Gammarids' feeding rate, serving as sublethal response variable, was reduced by up to 80% when consuming non-pretreated imidacloprid-contaminated leaves compared to imidacloprid-free leaves. Moreover, both leaching of imidacloprid from leaves (for 7 d) as well as UV-irradiation reduced the leaves' imidacloprid load (by 46 and 90%) thereby mitigating the effects on gammarids' feeding rate to levels comparable to the respective imidacloprid-free controls. Therefore, natural processes, such as UV-irradiation and re-mobilization of foliar insecticide residues in water, might be considered when evaluating the risks systemic insecticide applications in forests might pose for aquatic organisms in nearby streams.
Afficher plus [+] Moins [-]Interactive effects of increased temperature, pCO2 and the synthetic progestin levonorgestrel on the fitness and breeding of the amphipod Gammarus locusta
2018
Cardoso, P.G. | Loganimoce, E.M. | Neuparth, T. | Rocha, M.J. | Rocha, E. | Arenas, F.
Given the lack of knowledge regarding climate change-chemical exposure interactions, it is vital to evaluate how these two drivers jointly impact aquatic species. Thus, for the first time, we aimed at investigating the combined effects of increased temperature, pCO2 and the synthetic progestin levonorgestrel on survival, growth, consumption rate and reproduction of the amphipod Gammarus locusta. For that, a full factorial design manipulating temperature [ambient temperature and warming (+4 °C)], pCO2 [normocapnia and hypercapnia (Δ pH 0.5 units)] and the progestin levonorgestrel (LNG: L1 – 10 ngLL−1 and L2 – 1000 ngLL−1, control – no progestin and solvent control – vehicle ethanol (0.01%)) was implemented for 21 days. G. locusta was strongly negatively affected by warming, experiencing higher mortality rates (50–80%) than in any other treatments. Instead, growth rates were significantly affected by interactions of LNG with temperature and pCO2. It was observed, in the short-term (7d) that under ambient temperature (18 °C) and hypercapnic conditions (pH 7.6), the LNG presence promoted the amphipod's growth, while in the medium-term (21d) this response was not observed. Relative consumption rates (RCRs), during the first week were higher than in the third week. Furthermore, in the first week, RCRs were negatively affected by higher temperature while in the third week, RCRs were negatively affected by acidification. Furthermore, it was observed a negative effect of higher temperature and acidification on G. locusta fecundity, contrarily to LNG. Concluding, the impact of increased temperature and pCO2 was clearly more adverse for the species than exposure to the synthetic progestin, however, some interactions between the progestin and the climate factors were observed. Thus, in a future scenario of global change, the presence of LNG (and other progestins alike) may modulate to a certain level the effects of climate drivers (and vice-versa) on the gammarids fitness and reproduction.
Afficher plus [+] Moins [-]