Affiner votre recherche
Résultats 1-10 de 10
Oral bioaccessibility of silver nanoparticles and ions in natural soils: Importance of soil properties
2018
Dang, Fei | Jiang, Yuanyuan | Li, Min | Zhong, Huan | Peijnenburg, WillieJ.G.M. | Shi, Weilin | Zhou, Dongmei
The abundance of silver nanoparticles (AgNPs) in consumer products has led to their environmental release and therefore to concern about their impact on human health. The ingestion of AgNP-contaminated soil from urban sites is an important exposure pathway, especially for children. Given the limited information on oral bioaccessibility of soil Ag, we used a physiologically based extraction test (PBET) to evaluate the bioaccessibility of AgNPs and AgNO₃ from soil digestion. The AgNPs underwent several biochemical transformations, including their simultaneous dissolution and agglomeration in gastric fluid followed by the disintegration in the intestinal fluid of the agglomerates into NPs containing silver and chlorine. Therefore, Ag-containing soil exposed the intestine to nanoparticulate Ag in forms that were structurally different from the original forms. The bioaccessibility of AgNPs (0.5 ± 0.05%–10.9 ± 0.7%) was significantly lower than that of AgNO₃ (4.7 ± 0.6%–14.4 ± 0.1%), as a result of the lower adsorption of nanoparticles to soil residues during the digestive process. For the soils tested, the bioaccessibility of AgNPs increased with decreasing clay contents and lower pH. By identifying the soil properties that control AgNP bioaccessibility, a more efficient and accurate screening can be performed of soil types that pose the greatest health risk associated with AgNP exposure.
Afficher plus [+] Moins [-]Linking elevated blood lead level in urban school-aged children with bioaccessible lead in neighborhood soil
2020
Wu, Yangyang | Lou, Jianing | Sun, Xue | Ma, Lena Q. | Wang, Jueyang | Li, Mengya | Sun, Hong | Li, Hongbo | Huang, Lei
Lead (Pb) exposure is known to affect the health of children while soil Pb is an important contributor to human Pb exposure. To analyze the effects of both environmental and other factors, especially total and bioaccessible Pb in neighborhood soil, on school-aged urban children’s blood lead level (BLL), 75 children (6–11 years old) were recruited from an industry city in eastern China for BLL measurement and questionnaire survey. Soil samples were collected from their living neighborhoods and measured for total and bioaccessible Pb. The mean BLL was 4.82 μg dL⁻¹, with 42 out of 75 children having BLL exceeding the international guideline of 5 μg dL⁻¹. Low Pb contamination was observed in soil with total Pb ranging from 12.5 to 271 mg kg⁻¹ (mean 34.3 mg kg⁻¹). Based on the in vitro Solubility Bioaccessibility Research Consortium (SBRC) gastric fluid extraction, bioaccessible Pb in soil ranged from 0.40 to 79.1 mg kg⁻¹ (mean 7.58 mg kg⁻¹) with Pb bioaccessibility ranging from 1.74 to 68.1 (mean 19.9%). When BLL was correlated with total Pb in soil, insignificant linear relationship was observed (P > 0.05, correlation coefficient 95%CI = −0.047–0.40, R² = 0.07). However, when BLL was correlated with soil bioaccessible Pb or Pb bioaccessibility, much stronger linear relationships were observed (P < 0.01, correlation coefficient 95%CI = 0.28–0.64, R² = 0.16–0.20), suggesting that bioaccessible Pb was a much stronger predictor of BLL. In addition, strong associations were also observed between BLL and social factors such as house decoration, residence time, and personal habits, suggesting that both soil Pb contamination and social factors play important roles in elevating BLL for city children.
Afficher plus [+] Moins [-]Bioaccessibility and exposure assessment of trace metals from urban airborne particulate matter (PM10 and PM2.5) in simulated digestive fluid
2018
Gao, Peng | Guo, Huiyuan | Zhang, Zhaohan | Ou, Cuiyun | Hang, Jian | Fan, Qi | He, Chuan | Wu, Bing | Feng, Yujie | Xing, Baoshan
We describe a batch-extraction with simulated digestive fluid (salivary fluid, gastric fluid and intestinal fluid) to estimate the bioaccessibility of inhaled trace metals (TMs) in particulate matter less than 10 and 2.5 μm in aerodynamic diameter (PM₁₀ and PM₂.₅). Concentrations of the assayed TMs (As, Cd, Cr, Ni, Mn, Cu, Zn, Sb, Hg and Pb) were determined in PM₁₀ and PM₂.₅ samples by inductively coupled plasma-mass spectrometry. The TMs with the largest soluble fractions for airborne PM collected from winter and summer in saliva were Mn and Sb, respectively; in seasons this became Co in gastric fluid and Cu in intestinal fluid. Clearly, bioaccessibility is strongly dependent on particle size, the component of simulated digestive fluids (e.g., pH, digestive enzymes pepsin and trypsin), and the chemical properties of metal ions. The particle size and seasonal variation affected the inhaled bioaccessible fraction of PM-bound TMs during mucociliary clearance, which transported PM from the tracheal and the bronchial region to the digestive system. This study provides direct evidence for TMs in airborne PM being bioaccessible TMs are likely to possess an enhanced digestive toxic potential due to airborne PM pollution.
Afficher plus [+] Moins [-]Enhancing the interpretation of in vitro bioaccessibility data by using computer controlled scanning electron microscopy (CCSEM) at the individual particle level
2017
Entwistle, Jane A. | Hunt, Andrew | Boisa, Ndokiari | Dean, John R.
The adverse health effects resulting from exposure to contaminated soil on internally displaced populations in Mitrovica, Kosovo can be determined by how the potentially harmful elements are bound in the soils. Certainly this was the case for Pb, present at concentrations ranging from 624 to 46,900 mg/kg, and at bioaccessibilities ranging <5% to nearly 90%. To assess why the soil Pb might differ so markedly in terms of its bioaccessibility, computer controlled scanning electron microscopy (CCSEM) was employed to determine how the Pb was associated with other elements at the individual particle (IP) level in soils from the area. It was found that the Pb-bearing particle types were, for the most part, different in each sample. We consider these differences as the main control on Pb bioaccessibility in these soils. Pb solubility at the IP level was evaluated by examining Pb-particles from these soils in the electron microscope before and after successive immersions in a simulated gastric fluid. This analysis (differential IP analysis) confirmed the CCSEM characterization that Pb associated with other higher atomic number elements (Fe, Zn, Cu and Ni) was less soluble than when it was present as isolated phases (e.g., as carbonate) or when it was bound with lower atomic number elements (Na, Al, Si, K, Ca). The heterogeneity in solubility and composition of the Pb-particles suggested that the Pb originated from a range of different anthropogenic activities. The nature of these different anthropogenic activities created the wide differences in Pb-bioaccessibilty by producing Pb bound in many different forms in the soil particles. This type of Pb-particle characterization highlights the role CCSEM analysis, and IP acid extraction, can play in providing supporting evidence alongside bioaccessibility data for applications in human health risk assessment and management of contaminated soil.
Afficher plus [+] Moins [-]Mineralogy affects geoavailability, bioaccessibility and bioavailability of zinc
2013
We correlated mineralogical and particle characteristics of Zn-containing particles with Zn geoavailability, bioaccessibility, and bioavailability following gavage and intranasal (IN) administration in rats. We compared samples of Zn/Pb mine waste and five pulverized pure-phase Zn minerals (<38 μm). Particles were neutron-activated to produce radioactive 65Zn. We assessed geoavailability using sequential extractions and bioaccessibility using in vitro extraction tests simulating various pH and biological conditions. Zn in vivo bioavailability and in vitro bioaccessibility decreased as follows: mine waste > hydrozincite > hemimorphite > zincite ≈ smithsonite >> sphalerite. We found significant correlations among geoavailability, bioaccessibility and bioavailability. In particular, Zn bioavailability post-gavage and post-IN was significantly correlated with bioaccessibility in simulated phagolysosomal fluid and gastric fluid. These data indicate that solid phase speciation influences biological uptake of Zn and that in vitro tests can be used to predict Zn bioavailability in exposure assessment and effective remediation design.
Afficher plus [+] Moins [-]Adsorption and desorption behaviors of selected endocrine disrupting chemicals in simulated gastrointestinal fluids
2014
Fei, Ying-heng | Leung, Kenneth M.Y. | Li, Xiao-yan
An in vitro technique using simulated gastrointestinal (GI) fluids was applied to investigate the desorption of selected endocrine disrupting chemicals (EDCs), i.e. bisphenol A (BPA) and 17 α-ethinylestradiol (EE2), from the marine sediment in the digestive environment. The results show that the GI fluids suppressed chemical adsorption and greatly increased the desorption of BPA and EE2 from the sediment. Pepsin in the gastric fluid would compete for the adsorption sites with the adsorbates, and bile salts in the intestinal fluid had a solubilization effect on the chemicals. The amount of chemical release from the sediment in different fluids followed intestinal (fed)>intestinal (fasted)>gastric>saline water. During the dynamic desorption tests, 62% and 21% of sediment-bound BPA and EE2, respectively, could be released into the simulated GI fluids. The enhanced desorption of EDCs from sediment in the digestive system would make the pollutants more bioavailable in the ecosystem.
Afficher plus [+] Moins [-]Moringa oleifera alcoholic extract protected stomach from bisphenol A–induced gastric ulcer in rats via its anti-oxidant and anti-inflammatory activities
2022
Abo-Elsoud, Reda Abo Elfath Ahmed | Ahmed Mohamed Abdelaziz, Seham | Attia Abd Eldaim, Mabrouk | Hazzaa, Suzan Moustafa
This study evaluated the protective potentials of Moringa oleifera leaf alcoholic extract (MOLE) against bisphenol A (BPA)-induced stomach ulceration and inflammation in rats. Control rats received olive oil. Second group administered MOLE (200 mg/kg bwt) by oral gavage. Third group was given BPA (50 mg/ kg bwt) for 4 weeks. Fourth group administrated BPA and MOLE simultaneously. Fifth group was given MOLE for 4 weeks then administered BPA and MOLE for another 4 weeks. Bisphenol A induced gastric ulceration and decreased the volume of gastric juice, prostaglandin E2 (PGE2), reduced glutathione (GSH) and interleukin 10 (IL-10) contents, superoxide dismutase (SOD) activity, and proliferating cell nuclear antigen (PCNA) protein in stomach tissues, while increased the titratable acidity, malondialdehyde (MDA), tumor necrosis factor alpha (TNF-α) and interleukin 6 (IL-6) contents, and caspase-3 and NF‑κB proteins in stomach tissue. However, MOLE ameliorated BPA-induced gastric ulceration and significantly increased the volume of gastric juice, PGE2, GSH and IL-10 contents, SOD activity, and PCNA protein while significantly decreased titratable acidity, MDA, TNF-α and IL-6 contents, and of NF‑κB and caspase-3 proteins in gastric tissue. This study indicated that MOLE protected stomach against BPA-induced gastric injury via its anti-oxidant, anti-apoptotic, and anti-inflammatory activities.
Afficher plus [+] Moins [-]The suitability of extraction solutions to assess bioaccessible trace metal fractions in airborne particulate matter: a comparison of common leaching agents
2015
The determination of bioaccessible metal concentrations and/or fractions is a prerequisite for reliable assessment of the hazardous potential of toxic trace metals present in airborne particulate matter (APM). For this purpose, the use of various leaching agents has been reported in literature. The applied reagents reveal severe differences in composition. Therefore, variations in the amounts of trace metals released from APM samples could be expected with the use of these agents, hampering comparison of literature data. In this work, bioaccessible metal fractions were determined in PM10 samples from Graz, Austria, and Karachi, Pakistan, using synthetic gastric juice (SGJ), artificial lysosomal fluid (ALF), Gamble’s solution, aqueous solutions of sodium chloride, ammonium acetate, ammonium citrate, and water for sample extraction. Investigated trace metals showed distinct differences in extractable fractions for the same extractant. For example, bioaccessible contents ranged from 34.8 ± 13.3 % for Ni (n = 12) to 77.9 ± 14.8 % for Cd (n = 12) when SGJ was used for extraction. Furthermore, extraction yields for the applied leaching agents were determined, indicating for all investigated elements two to four times more efficient extraction with SGJ, ammonium citrate buffer, and ALF as compared to water and simple inorganic salt solutions, indicating that ammonium citrate buffer could be used as an alternative for synthetic body fluids with rather complex composition.
Afficher plus [+] Moins [-]Enhanced bioaccumulation of pentachlorophenol in carp in the presence of multi-walled carbon nanotubes
2014
Sun, Hongwen | Ruan, Yuefei | Zhu, Hongkai | Zhang, Zhiyan | Zhang, Yanwei | Yu, Li
The impact of suspended particles on the bioavailability of pollutants has long been a controversial topic. In this study, adsorption of pentachlorophenol (PCP) onto a natural suspended particulate matter (SPM) and multi-walled carbon nanotubes (MWCNTs) was studied. Facilitated transports of PCP into carp by SPM and MWCNTs were evaluated by bioaccumulation tests exposing carp (Carassius auratus red var.) to PCP-contaminated water in the presence of SPM and MWCNTs, respectively. Desorption of PCP on SPM and MWCNTs in simulated digested fluids was also investigated. The results demonstrate that MWCNTs (KF = 7.99 × 10⁴) had a significantly stronger adsorption capacity for PCP than the SPM (KF = 19.0). The presence of SPM and MWCNTs both improved PCP accumulation in the carp during the 21 days of exposure, and the 21 days PCP concentration in the carp was enhanced by 25.9 and 12.8 % than that without particles, respectively. The enhancement in bioaccumulation by MWCNTs was less than that by the SPM. Considerably more PCP was accumulated in the viscera of the fish (BCF = 519495 for SPM and 148955 for MWCNTs), and the difference in PCP concentrations between different tissues became greater with particles. PCP desorption in the simulated digestive fluids was faster than that in the background solution. Compared to MWCNTs-bound PCP, more SPM-bound PCP was desorbed, and KFof desorption for SPM was at least 4 orders of magnitude higher than that for MWCNTs, which can explain the greater enhancement in bioaccumulation in the presence of SPM. Particle-bound pollutants might pose more risk than pollutants alone.
Afficher plus [+] Moins [-]In vitro gastro-intestinal method for the assessment of heavy metal bioavailability in contaminated soils
2011
Karadaş, Cennet | Kara, Derya
Introduction Balya and its associated villages which is a town of the Balikesir region of Turkey have very rich zinc, lead, and manganese mines. These mines have been operating since the thirteenth century and now there is heavy metal contamination in both the soil and natural waters in these areas. Materials and methods Soils were collected from Sarı su, Enverpaşa, and Hastanetepe which are in Balya town and Kadıköy, Kaşıkcı, Müstecap, Patlak, Çakallar, and Bengiler which are the villages near Balya and the mine areas. Nine trace analytes (As, Ba, Cd, Cr, Cu, Mn, Ni, Pb, and Zn) were determined using an acid extraction procedure as well as from PBET in vitro gastro-intestinal experiments using ICP-OES. Results and discussion The results showed that high As, Ba, Pb, Zn, and Cd concentrations were found in these soils. The amounts ingested by pica behavior of children at the rate of 10 g day⁻¹ are calculated using the results of in vitro intestinal bio-accessibility experiments. Conclusion The results showed that the amount of As, Pb, Ba, and Cd levels ingested by pica behavior are substantially higher than tolerable daily intake values in most of the soils. When normal ingestion is taken into account, the tolerable daily limits are only exceeded for one element (Pb) and even then, only at two sites.
Afficher plus [+] Moins [-]